Skip to main content

Advertisement

Log in

Development, optimization and characterization of a two step sol–gel synthesis route for ZnO/SnO2 nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, two-step sol–gel synthesis method has been used to prepare coupled semiconductor metal oxide nanocomposites of SnO2/ZnO. The structure and crystalline phase of the sample was identified using the X-ray powder diffraction analysis. The XRD pattern of SnO2/ZnO nanocomposite exhibited all the diffraction peaks for both SnO2 (tetragonal phase) and ZnO (hexagonal wurtzite phase). Surface morphological features of the prepared samples were analyzed using Scanning electronic microscopic analysis. Particle shape and size of the developed nanocomposite samples were analyzed using Transmission electronic microscopic analysis. Prepared nanoparticles have average particle size of 28 nm. EDX spectrum was used to obtain the elemental composition of the prepared sample. The peaks observed from EDX spectrum is analogous to all three elements (Sn, Zn and O) confirming the formation of SnO2/ZnO nanoparticles. Raman spectroscopic analysis was carried out to observe the peak shift of the individual composite materials. The optical properties of the samples were examined using UV–Vis reflectance and photoluminescence spectroscopic analysis. The value of band gap of SnO2/ZnO Nanocomposite was found to be 3.15 eV. The dielectric constant, dielectric loss and AC conductivity at different temperatures and frequencies were determined to obtain the typical dielectric behavior of the synthesized nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)

    Article  Google Scholar 

  2. W. Lu, C.M. Lieber, Nat. Mater. 6, 841 (2007)

    Article  Google Scholar 

  3. J.A. Rodriguez, M. Fernandez-Garcia, Synthesis, Properties, and Applications of Oxide Nanomaterials. (Wiley, New Jersey, 2007)

    Book  Google Scholar 

  4. J.G. Lu, P. Chang, Z. Fan, Mater. Sci. Eng. R 52, 49 (2006)

    Article  Google Scholar 

  5. Z.Q. Liu, L.X. Ding, Z.L. Wang, Y.C. Mao, S.L. Xie, Y.M. Zhang, G.R. Lia, Y.X. Tong, Cryst. Eng. Comm. 14, 2289 (2012)

    Article  Google Scholar 

  6. X. Ma, J. Nanoeng. Nanomanuf. 2, 143–149 (2012)

    Article  Google Scholar 

  7. Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Nanotechnology, 19, 095508 (2008)

    Article  Google Scholar 

  8. B. Wang, L. Zhu, Y. Yang, N. Xu, G. Yang, J. Phys. Chem. C 112, 6643–6647 (2008)

    Article  Google Scholar 

  9. G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, R. Pasricha, Carbon 50, 385–394 (2012)

    Article  Google Scholar 

  10. M. Carotta, A. Cervi, A. Fioravanti, S. Gherardi, A. Giberti, B. Vendemiati, D. Vincenzi, M. Sacerdoti, Thin Solid Films 520, 939–946 (2011)

    Article  Google Scholar 

  11. A. Alkaya, R. Kaplan, H. Canbolat, S.S. Hegedus, Renew. Energy 34, 1595 (2009)

    Article  Google Scholar 

  12. X. Song, Z. Wang, Y. Liu, C. Wang, L. Li, Nanotechnology 20, 075501 (2009)

    Article  Google Scholar 

  13. H. Wang, S. Baek, J. Lee, S. Lim, Chem. Eng. J. 146, 355 (2009)

    Article  Google Scholar 

  14. J.H. Yu, G.M. Choi, Sens. Actuators B 52, 251 (1998)

    Article  Google Scholar 

  15. Q. Kuang, Z.-Y. Jiang, Z.-X. Xie, S.-C. Lin, Z.-W. Lin, S.Y. Xie, R.-B. Huang, L.-S. Zheng, J. Am. Chem. Soc. 127, 11777 (2005)

    Article  Google Scholar 

  16. M. Zhang, G. Sheng, J. Fu, T. An, Z. Wang, X. Hu, Mater. Lett. 59, 3641 (2005)

    Article  Google Scholar 

  17. C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, C.C. Liu, Sens. Actuators B 134, 360 (2008)

    Article  Google Scholar 

  18. H.Y. Chao, S.H. You, J.Y. Lu, J.H. Cheng, Y.H. Chang, C.T. Liang, C.T. Wu, J. Nanosci. Nanotechnol. 11, 2042–2046 (2011)

    Article  Google Scholar 

  19. J. Jiang, H. Zhou, F. Zhang, T. Fan, D. Zhang, Appl. Surf. Sci. 368, 309–315 (2016)

    Article  Google Scholar 

  20. D. Li, X. Jiang, Y. Zhang, B. Zhang, ,C. Pan, J. Mater. Res. 28(3), 507–512 (2013)

    Article  Google Scholar 

  21. S. Zhenya, D. Yundi, Z. Weiying, J. Nanomater. 2008, 286069 (2008)

    Article  Google Scholar 

  22. Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, Y. Liu, J. Phys. Chem. C 114, 7920–7925 (2010)

    Article  Google Scholar 

  23. N. Talebian, M.R. Nilforoushan, E.B. Zargar, Appl. Surf. Sci. 258, 547–555 (2011)

    Article  Google Scholar 

  24. H. Uchiyama, R. Nagao, H. Kozuka, J. Alloys Compd. 554, 122–126 (2013)

    Article  Google Scholar 

  25. Z. Yang, L. Lv, Y. Dai, Z. Xv, D. Qian, Appl. Surf. Sci. 256, 2898–2902 (2010)

    Article  Google Scholar 

  26. D.Y. Torres Martínez, R. CastanedoPéreza, G. Torres Delgado, O. ZelayaÁngel, J. Photochem. Photobiol. A 235, 49–55 (2012)

    Article  Google Scholar 

  27. K. Mcguire, Z.W. Pan, J. Menéndez, Z.L. Wang, A.M. Rao, D. Milkie, J. Nanosci. Nanotechnol. 2, 5 (2002)

    Article  Google Scholar 

  28. O. Lupan, T. Pauporte, L. Chow, Turk. J. Phys. 38, 399–419 (2014)

    Article  Google Scholar 

  29. S. Sagadevan, Appl. Nanosci. 4, 325–329 (2014)

    Article  Google Scholar 

  30. S. Sagadevan, K. Pal, J. Mater. Sci.: Mater. Electron. 28, 9072–9080 (2017)

    Google Scholar 

  31. S. Sagadevan, K. Pal, P. Koteeswari, A. Subashini, J. Mater. Sci. 28, 7892–7898 (2017)

    Google Scholar 

  32. K.A. Mangai, K.T. Selvi, M. Priya, M. Rathnakumari, P. Sureshkumar, S. Sagadevan, J. Mater. Sci. 28, 2910–2922 (2017)

    Google Scholar 

  33. S. Sagadevan, I. Das, K. Pal, P. Murugasen, P. Singh, J. Mater. Sci. 28, 5235–5243 (2017)

    Google Scholar 

  34. S. Suresh, C. Arunseshan, Appl. Nanosci. 4, 179 (2014)

    Article  Google Scholar 

  35. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Mater. Sci. Appl. 4, 432 (2013)

    Google Scholar 

  36. S. Sagadevan, I. Das, P. Singh, J. Podder, J. Mater. Sci.: Mater. Electron. 28, 1136–1141 (2017)

    Google Scholar 

  37. S. Sagadevan, J. Podder, Int. J. Nanoparticles 8, 289–301 (2015)

    Article  Google Scholar 

  38. I. Das, S. Sagadevan, Z.Z. Chowdhury, N. Vijayan, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8070-4

    Google Scholar 

  39. R. Milan, G.S. Selopal, M. Epifani, M.M. Natile, G. Sberveglieri, A. Vomiero, I. Concina, Sci. Rep. 5, 14523 (2015). https://doi.org/10.1038/srep14523

  40. J.A. Anta, E. Guillen, R. Tena-Zaera, J. Phys. Chem. C 116, 11413–11425 (2012)

    Article  Google Scholar 

Download references

Funding

Funding

Funding was provided by AMET UNIVERSITY(BKP-054-2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Sagadevan or Zaira Zaman Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, I., Sagadevan, S., Chowdhury, Z.Z. et al. Development, optimization and characterization of a two step sol–gel synthesis route for ZnO/SnO2 nanocomposite. J Mater Sci: Mater Electron 29, 4128–4135 (2018). https://doi.org/10.1007/s10854-017-8357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8357-5

Navigation