Skip to main content
Log in

Synthesis of flexible mullite nanofibres by electrospinning based on nonhydrolytic sol–gel method

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mullite nanofibres with excellent flexibility and high temperature resistance were fabricated by electrospinning method using the nonhydrolytic sol as a precursor. The nonhydrolytic mullite sol exhibited favourable organosolubility and spinnability, due to the residual organic groups in gel particles. The thermal decomposition behaviour, crystallisation development and microstructure evolution of electrospinning precursor fibres were investigated. Results showed that the flexible mullite nanofibres with smooth surface, uniform diameter and small crystal grain size were obtained after the precursor fibres were calcined at 1000 °C for 1 h. In addition, the results also revealed that the mullite nanofibres calcined at 1500 °C still maintained their general fibrous morphology, and thereby they had the potential application in high-temperature industrial and aerospace field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cividanes LS, Campos TMB, Rodrigues LA, Brunelli DD, Thim GP (2010) Review of mullite synthesis routes by sol-gel method. J Solgel Sci Technol 55:111–125

    Article  Google Scholar 

  2. Chen X, Gu L (2009) Structural evolution of sol-gel derived mullite fibres with different solid contents during sintering. J Mater Process Technol 209:3991–3998

    Article  Google Scholar 

  3. Zhang Y, Ding Y, Gao J, Yang J (2009) Mullite fibres prepared by sol-gel method using polyvinyl butyral. J Eur Ceram Soc 29:1101–1107

    Article  Google Scholar 

  4. Kaya C, Butlera EG, Selcuk A, Boccaccini AR, Lewis MH (2002) Mullite (NextelTM 720) fibre-reinforced mullite matrix composites exhibiting favourable thermomechanical properties. J Eur Ceram Soc 22:2333–2342

    Article  Google Scholar 

  5. Xiao ZJ, Mitchell BS (1998) The production of mullite fibers via inviscid melt-spinning (IMS). Mater Lett 37:359–365

    Article  Google Scholar 

  6. Song KC (1998) Preparation of mullite fibres by the sol-sol method. J Solgel Sci Technol 13:1017–1021

    Article  Google Scholar 

  7. Tan HB, Ding YP, Yang JF (2010) Mullite fibers prepared from an inorganic sol-gel precursor. J Solgel Sci Technol 53:378–383

    Article  Google Scholar 

  8. Chen XT, Gu LX (2009) Sol-gel dry spinning of mullite fibers from AN/TEOS/AIP system. Mater Res Bull 44:865–873

    Article  Google Scholar 

  9. Bhattacharya AK, Hartridge A, Mallick KK, Taylor DM (1996) A novel aqueous route for the synthesis of mullite fibres. J Mater Sci Lett 15:1654–1656

    Article  Google Scholar 

  10. Tan HB (2011) Mullite fibre preparation by extrusion method using alumina sol as binder. Mater Technol 26:76–79

    Article  Google Scholar 

  11. Chen ZX, Zhang Z, Tsai CC, Kornev K, Luzinov I, Fang MH, Peng F (2015) Electrospinning mullite fibres from the sol-gel precursor. J Solgel Sci Technol 74:208–219

    Article  Google Scholar 

  12. Peng C, Liu PC, Hu J, Hua T, Shen YJ, Zhao BH, Tang GY (2014) Preparation of uniaxially aligned mullite ceramic fibres by electrospinning. Colloids Surf A 457:1–7

    Article  Google Scholar 

  13. Zadeh MMA, Keyanpour-Rad M, Ebadzadeh T (2013) Synthesis of mullite nanofibres by electrospinning of solutions containing different proportions of polyvinyl butyral. Ceram Int 39:9079–9084

    Article  Google Scholar 

  14. Zadeh MMA, Keyanpour-Rad M, Ebadzadeh T (2014) Effect of viscosity of polyvinyl alcohol solution on morphology of the electrospinning mullite nanofibers. Ceram Int 40:5461–5466

    Article  Google Scholar 

  15. Wu J, Lin H, Li JB, Zhan XB, Li JF (2009) Fabrication and characterization of electrospinning mullite nanofibers. Mater Lett 63:2309–2312

    Article  Google Scholar 

  16. Wu J, Lin H, Li JB, Zhan XB, Li JF (2010) Synthesis and characterization of electrospinning mullite fibres. Adv Eng Mater 12:71–74

    Article  Google Scholar 

  17. Chen ZX, Gu Y, Zhang Z, Kornev KG, Luzinov I, Peng F (2015) Measuring flexural rigidity of mullite microfibres using magnetic droplets. J Appl Phys 117:1–8

    Google Scholar 

  18. Chen ZX, Gu Y, Aprelev P, Kornev K, Luzinov I, Chen J, Peng F (2016) Mullite-nickel magnetic nanocomposite fibers obtained from electrospinning followed by thermal reduction. J Am Ceram Soc 99:1504–1511

    Article  Google Scholar 

  19. Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596

    Article  Google Scholar 

  20. Niederberger M (2007) Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800

    Article  Google Scholar 

  21. Mutin PH, Vioux A (2013) Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. J Mater Chem 1:11504–11512

    Article  Google Scholar 

  22. Acosta S, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1994) Monophasic pre-mullite gels prepared by a nonhydrolytic process. Mater Res Soc 346:345–350

    Article  Google Scholar 

  23. Hay JN, Raval HM (1998) Solvent-free synthesis of binary inorganic oxides. J Mater Chem 8:1233–1239

    Article  Google Scholar 

  24. Aboulaich A, Lorret O, Boury B, Mutin PH (2009) Surfactant-free organo-soluble silica-titania and silica nanoparticles. Chem Mater 21:2577–2579

    Article  Google Scholar 

  25. Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free nonhydrolytic synthesis. Chem Mater 22:4519–4521

    Article  Google Scholar 

  26. Aboulaich A, Boury B, Mutin PH (2011) Reactive and organosoluble SnO2 nanoparticles by a surfactant-free non-hydrolytic sol-gel route. Eur J Inorg Chem 24:3644–3649

  27. Wang SN, Wang DK, Smart S, da Costa JCD (2015) Ternary phase-separation investigtation of sol-gel derived silica from ethyl silicate 40. Sci Rep 5:1–11

    Google Scholar 

  28. Mondragon MA, Castano VM, Garcia MJ, Tellez SCA (1995) Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels. Vib Spectrosc 9:293–304

    Article  Google Scholar 

  29. Caetano BL, Rocha LA, Molina E, Rocha ZN, Ricci G, Calefi PS, de Lima OJ, Mello C, Nassar EJ, Ciuffi KJ (2006) Cobalt aluminum silicate complexes prepared by the non-hydrolytic sol-gel route and their catalytic activity in hydrocarbon oxidation. Appl Catal A Gen 311:122–134

    Article  Google Scholar 

  30. Grader GS, Melchior SA, De-Hazan Y, Melamed S, Shter GE (2001) Entrapment of organosilicon molecules in nonhydrolytic alumina gels and thermal behavior of the resulting composite. Mater Res 16:1413–1419

    Article  Google Scholar 

  31. Zhang YF, Li JY, Li Q, Zhu L, Liu XD, Zhong XH, Meng J, Cao XQ (2007) Preparation of CeO2-ZrO2 ceramic fibres by electrospinning. J Colloid Interface Sci 307:567–571

    Article  Google Scholar 

  32. Lee DY, Lee KH, Lee MH, Cho NI, Kim BY (2010) Synthesis of electrospinning BaSrTiO3/PVP nanofibers. J Solgel Sci Technol 53:43–49

    Article  Google Scholar 

  33. Hayat K, Rafiq MA, Hasan MM (2012) Synthesis and optimization of barium manganate nanofibers by electrospinning. Ceram Int 38:1441–1445

    Article  Google Scholar 

  34. Zhang YB, Ding YP, Li Y, Gao JQ, Yang JF, Guo LT (2011) Mullite fibers prepared by sol-gel method using aluminum chloride aluminum isopropoxide and tetraethylorthosilicate. Mater Manuf Process 26:649–653

    Article  Google Scholar 

  35. Chatterjee M, Naskar MK, Chakrabarty PK, Ganguli D (2002) Mullite fibre mats by a sol-sol spinning technique. J Solgel Sci Technol 25:169–174

    Article  Google Scholar 

  36. Kim GD, Lee DA, Lee HI, Yoon SJ (1993) A study on the development of mullite fibers using the sol-sol process. Mater Sci Eng A167:171–178

    Article  Google Scholar 

  37. Tan HB (2011) Mullite fibres prepared by sol-sol method using malic acid. Adv Appl Ceram 110:70–73

    Article  Google Scholar 

  38. Song KC (1998) Preparation of mullite fibers from aluminum isopropoxide-aluminum nitrate-tetraethylorthosilicate solutions by sol-sol method. Mater Lett 35:290–296

    Article  Google Scholar 

  39. Mao X, Shan H, Song J, Bai Y, Yu JY, Ding B (2016) Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes. Cryst Eng Comm 18:1139–1146

    Article  Google Scholar 

  40. Zhao F, Wang XF, Ding B, Lin JY, Hu JP, Si Y, Yu JY, Sun G (2011) Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Adv 1:1482–1488

    Article  Google Scholar 

  41. Dong X, Sui GF, Yun ZQ, Wang MC, Guo AR, Zhang J, Liu JC (2016) Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method. Mater Des 90:942–948

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (51302064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng-yong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Hy., Li, H., Cui, Y. et al. Synthesis of flexible mullite nanofibres by electrospinning based on nonhydrolytic sol–gel method. J Sol-Gel Sci Technol 82, 718–727 (2017). https://doi.org/10.1007/s10971-017-4354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4354-7

Keywords

Navigation