Skip to main content
Log in

Characterization and microstructure investigation of novel ternary ZrO2–Al2O3–TiO2 composites synthesized by citrate–nitrate process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The citrate–nitrate, sol–gel technique was used to prepare two different composites in the ZrO2–Al2O3–TiO2 system. The influence of two various compositions and calcination temperatures on the phase transformation and microstructure was investigated by the simultaneous thermal analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Results showed that while the combustion intensity was vigorous for the stoichiometric sample (ZAT-1) at 346 °C, the combustion occurs at a temperature range (270–500 °C) for the alumina-rich sample (ZAT-2). FTIR spectra confirmed the formation of complex compounds with citrate ligands. The XRD patterns revealed ZrTiO4 formation at 900 °C in both samples due to its thermodynamic stability; surprisingly, in stoichiometric samples calcined at 1100 °C, Al2TiO5 and monoclinic ZrO2 phases were detected, which indicated ZrTiO4 decomposition, whereas in alumina-rich samples, no ZrTiO4 decomposition was observed. The SEM micrographs also showed orthorhombic particles of ZrTiO4 with average particle size around 100 nm for the stoichiometric sample calcined at 1100 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim IJ, Cao G (2002) Low thermal expansion behavior and thermal durability of ZrTiO4–Al2TiO5–Fe2O3 ceramics between 750 and 1400 °C. J Eur Ceram Soc 22:2627–2632. doi:10.1016/S0955-2219(02)00126-7

    Article  Google Scholar 

  2. Ahmed MA, Abdel-Messih MF (2011) Structural and nano-composite features of TiO2–Al2O3 powders prepared by sol–gel method. J Alloys Compd 509:2154–2159. doi:10.1016/j.jallcom.2010.10.172

    Article  Google Scholar 

  3. Zaharescu M, Crisan M, Preda M et al (2003) Al2TiO5-based ceramics obtained by hydrothermal process. J Optoelectron Adv Mater 5:1411–1416

    Google Scholar 

  4. Kim HC, Lee KS, Kweon OS et al (2007) Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature. J Eur Ceram Soc 27:1431–1434. doi:10.1016/j.jeurceramsoc.2006.04.024

    Article  Google Scholar 

  5. Imagawa H, Tanaka T, Takahashi N et al (2009) Titanium-doped nanocomposite of Al2O3 and ZrO2–TiO2 as a support with high sulfur durability for NO x storage-reduction catalyst. Appl Catal B Environ 86:63–68. doi:10.1016/j.apcatb.2008.07.019

    Article  Google Scholar 

  6. Kim IJ (2010) Thermal stability of Al2TiO5 ceramics for new diesel particulate filter applications—a literature review. J Ceram Process Res 11:411–418

    Google Scholar 

  7. Jeffrey NB (2004) Increasing the thermal stability of aluminium titanate for solid oxide fuel cell anodes. Research Symposium II, PA, USA

  8. Buscaglia V, Nanni P, Battilana G et al (1994) Reaction sintering of aluminium titanate: I—effect of MgO addition. J Eur Ceram Soc 13:411–417. doi:10.1016/0955-2219(94)90018-3

    Article  Google Scholar 

  9. De Arenas IB (2012) Reactive sintering of aluminum titanate, sintering of ceramics—new emerging techniques. In: Lakshmanan A (ed) ISBN: 978-953-51-0017-1, InTech. Available from: http://www.intechopen.com/books/sintering-of-ceramics-new-emerging-techniques/reactive-sintering-ofaluminum-titanate

  10. Lin HL, Chiang RK, Kuo CL, Chang CW (2007) Synthesis of BaCeO3 powders by a fast aqueous citrate–nitrate process. J Non Cryst Solids 353:1188–1194. doi:10.1016/j.jnoncrysol.2006.09.042

    Article  Google Scholar 

  11. Saberi A, Negahdari Z, Alinejad B, Golestani-Fard F (2009) Synthesis and characterization of nanocrystalline forsterite through citrate–nitrate route. Ceram Int 35:1705–1708. doi:10.1016/j.ceramint.2008.09.007

    Article  Google Scholar 

  12. Reddy BM, Reddy GK, Rao KN et al (2009) Characterization and photocatalytic activity of TiO2–M x O y (M x O y  = SiO2, Al2O3, and ZrO2) mixed oxides synthesized by microwave-induced solution combustion technique. J Mater Sci 44:4874–4882. doi:10.1007/s10853-009-3743-x

    Article  Google Scholar 

  13. Behera SK, Barpanda P, Pratihar SK, Bhattacharyya S (2004) Synthesis of magnesium–aluminium spinel from autoignition of citrate–nitrate gel. Mater Lett 58:1451–1455. doi:10.1016/j.matlet.2003.10.004

    Article  Google Scholar 

  14. Seeley Z, Choi YJ, Bose S (2009) Citrate–nitrate synthesis of nano-structured titanium dioxide ceramics for gas sensors. Sens Actuators B Chem 140:98–103. doi:10.1016/j.snb.2009.04.015

    Article  Google Scholar 

  15. Shen C (2004) Sol–gel synthesis and spark plasma sintering of Ba0.5Sr0.5TiO3. Mater Lett 58:2302–2305. doi:10.1016/j.matlet.2004.02.009

    Article  Google Scholar 

  16. Chandradass J, Yoon JH, Bae DS (2008) Synthesis and characterization of zirconia doped alumina nanopowder by citrate-nitrate process. Mater Sci Eng, A 473:360–364. doi:10.1016/j.msea.2007.04.115

    Article  Google Scholar 

  17. Marinšek M, Zupan K, Maèek J (2002) Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J Power Sources 106:178–188. doi:10.1016/S0378-7753(01)01056-4

    Article  Google Scholar 

  18. Guo XZ, Ravi BG, Devi PS et al (2005) Synthesis of yttrium iron garnet (YIG) by citrate–nitrate gel combustion and precursor plasma spray processes. J Magn Magn Mater 295:145–154. doi:10.1016/j.jmmm.2005.01.007

    Article  Google Scholar 

  19. Salunkhe AB, Khot VM, Phadatare MR, Pawar SH (2012) Combustion synthesis of cobalt ferrite nanoparticles—influence of fuel to oxidizer ratio. J Alloys Compd 514:91–96. doi:10.1016/j.jallcom.2011.10.094

    Article  Google Scholar 

  20. Epifani M, Melissano E, Pace G, Schioppa M (2007) Precursors for the combustion synthesis of metal oxides from the sol–gel processing of metal complexes. J Eur Ceram Soc 27:115–123. doi:10.1016/j.jeurceramsoc.2006.04.084

    Article  Google Scholar 

  21. Segadães AM, Morelli MR, Kiminami RGA (1998) Combustion synthesis of aluminium titanate: thermal stability. J Eur Ceram Soc 18:771–781. doi:10.4028/www.scientific.net/KEM.132-136.209

    Article  Google Scholar 

  22. Jain SR, Adiga KC, Pai Verneker VR (1981) A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame 40:71–79. doi:10.1016/0010-2180(81)90111-5

    Article  Google Scholar 

  23. Bonhomme-Coury L, Lequeux N, Mussotte S, Boch P (1994) Preparation of Al2TiO5–ZrO2 mixed powders via sol–gel process. J Sol-Gel Sci Technol 2:371–375

    Article  Google Scholar 

  24. Andrianainarivelo M, Corriu RJP, Leclercq D et al (1997) Non-hydrolytic sol–gel process: zirconium titanate gels. J Mater Chem 7:279–284. doi:10.1039/a605168e

    Article  Google Scholar 

  25. Hom BK, Stevens R, Woodfield BF, Boerio-Goates J (2001) The thermodynamics of formation, molar heat capacity, and thermodynamic functions of ZrTiO4 (cr). J Chem Thermodyn 33:165–178. doi:10.1006/jcht.2000.0755

    Article  Google Scholar 

  26. Zhitong S, Xingyi X, Keqin H, Changzhen W (1991) Standard gibbs free energy of formation of zirconium oxysulphides. Chin J Mater Sci Technol 7:65–67

    Google Scholar 

  27. López-López E, Sanjuán ML, Moreno R, Baudín C (2010) Phase evolution in reaction sintered zirconium titanate based materials. J Eur Ceram Soc 30:981–991. doi:10.1016/j.jeurceramsoc.2009.10.012

    Article  Google Scholar 

  28. Rendtorff NM, Suárez G, Aglietti EF (2014) Non isothermal kinetic study of the aluminium titanate formation in alumina–titania mixtures. Cerâmica 60:411–416

    Article  Google Scholar 

  29. López T, Ortiz E, Gómez R, Picquart M (2006) Amorphous sol–gel titania modified with heteropolyacids. J Sol-Gel Sci Technol 37:189–193. doi:10.1007/s10971-005-6627-9

    Article  Google Scholar 

  30. Castro L, Reyes P, Correa CM (2002) Synthesis and characterization of sol–gel Cu-ZrO2 and Fe-ZrO2 Catalysts. J Sol-Gel Sci Technol 25:159–168

    Article  Google Scholar 

  31. Salavati-Niasari M, Dadkhah M, Davar F (2009) Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV) nitrate as new precursor complex. Inorg Chim Acta 362:3969–3974. doi:10.1016/j.ica.2009.05.036

    Article  Google Scholar 

  32. Zhu LY, Xu D, Yu G, Wang XQ (2009) Preparation and characterization of zirconium titanate fibers with good high temperature performance. J Sol-Gel Sci Technol 49:341–346. doi:10.1007/s10971-008-1877-y

    Article  Google Scholar 

  33. Sobhani M, Rezaie HR, Naghizadeh R (2008) Sol–gel synthesis of aluminum titanate (Al2TiO5) nano-particles. J Mater Process Technol 206:282–285. doi:10.1016/j.jmatprotec.2007.12.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sarpoolaky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidi, M., Sarpoolaky, H. & Mirkazemi, S.M. Characterization and microstructure investigation of novel ternary ZrO2–Al2O3–TiO2 composites synthesized by citrate–nitrate process. J Sol-Gel Sci Technol 76, 436–445 (2015). https://doi.org/10.1007/s10971-015-3792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3792-3

Keywords

Navigation