Skip to main content
Log in

Influence of oxygen atmosphere on the photoluminescence properties of sol–gel derived ZrO2 thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Homogeneous and transparent ZrO2 thin films were prepared by sol–gel dip coating method. The prepared ZrO2 thin films were annealed in air and O2 atmosphere at 500, 700 and 900 °C for 1, 5 and 10 h. X-Ray diffraction (XRD) pattern showed the formation of tetragonal phase with a change of stress in the films. Scanning electron microscope (SEM) revealed the nucleation and particle growth on the films. An average transmittance of >80 % (in UV–Vis region) was observed for all samples. The refractive index and direct energy band gap were found to vary as functions of annealing atmosphere, temperature and time. Photoluminescence (PL) revealed an intense emission peak at 379 nm weak emission peaks at 294, 586 and 754 nm. An enhancement of PL intensity was observed in films annealed in O2 atmosphere. This is due to reconstruction of zirconium nanocrystals interfaces, which help passivate the non-radiative defects. At 900 °C, oxygen atoms react with Zr easily at the interface and destroy the interface states acting as emission centres and quench the PL intensity of the film. The enhancement of the luminescence properties of ZrO2 by the passivation of non radiative defects presents in the films make it suitable for gas sensors development, tuneable lasers and compact disc (CD) read-heads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Venataraj S, Kappertz O, Weis H, Drese R, Jayavel R, Wuttig M (2002) J Appl Phys 92:3599

    Article  Google Scholar 

  2. Lai L-J, Lu H-C, Chen H-K, Cheng B-M, Lin M-I, Chu T-C (2005) J Electron Spectrosc Relat Phenom 865:144

    Google Scholar 

  3. Gottmann J, Husmann A, Klotzbucher T, Kreutz EW (1998) Surf Coat Technol 100–101:415

  4. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897

    Article  CAS  Google Scholar 

  5. Cao H, Qiu X, Luo B, Liang Y, Zhang Y, Tan R, Zhao M, Zhu Q (2004) Adv Funct Mater 14(3):243

  6. Joy K, John Berlin I, Nair PB, Lakshmi JS, Daniel GP, Thomas PV (2011) J Phys Chem Solids 72:673

    Article  CAS  Google Scholar 

  7. Kim H, Horwize JS, Qadri SB, Chrisey DB (2002) Thin Solid Films 10:420

    Google Scholar 

  8. Suzuki A, Matsushita T, Wada N, Sakamoto Y, Okuda M (1996) Jpn J Appl Phys 35:L36

    Google Scholar 

  9. Lakshmi JS, John Berlin I, Daniel GP, Thomas PV, Joy K (2011) Phys B 406:3050L56

    Article  Google Scholar 

  10. Fabris S, Paxton AT, Finnis MW (2002) Acta Mater 50:5171

    Article  CAS  Google Scholar 

  11. Kirm M, Aarik J, Jurgens M, Sildos I (2005) Nucl Instrum Methods Phys Res A 537:251

    Article  CAS  Google Scholar 

  12. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Science 29:103

    Article  Google Scholar 

  13. Smits K, Grigorjeva L, Millers D, Sarakovskis A, Grabis J, Lojkowski W (2011) J Lumin 131:2058

    Article  CAS  Google Scholar 

  14. Smits K, Millers D, Grigorjeva L, Fidelus J, Lojkowski D (2007) J Phys: Conf Ser 93:012035

    Article  Google Scholar 

  15. Ito T, Maeda M, Nakmura K, Kato H, Ohki Y (2005) J Appl Phys 97:54104

    Article  Google Scholar 

  16. Harrison DE, Melamed NT, Subbarao EC (1963) J Electrochem Soc 110:23

    Article  CAS  Google Scholar 

  17. Hsieh WC, Su CS (1994) J Phys D Appl Phys 27:1763

    Article  CAS  Google Scholar 

  18. Paje SE, Garcia MA, Liopis J (1995) Phys Stat Sol (a) 148:225

    Article  Google Scholar 

  19. Liang J, Jiang X, Liu G, Deng Z, Zhuang J, Li F, Li Y (2003) Mater Res Bull 38:161

    Article  CAS  Google Scholar 

  20. Trivinho-Strixino F, Guimarães FEG, Pereira EC (2008) Chem Phys Lett 461:82

    Article  CAS  Google Scholar 

  21. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, NJ, p 388

    Google Scholar 

  22. John Berlin I, Lakshmi JS, Sujatha Lekshmy S, Daniel GP, Thomas PV, Joy K (2011) J Sol-Gel Sci Technol 58:669

    Article  Google Scholar 

  23. Kohl D, Henzler M, Heiland G (1974) Surf Sci 41:403

    Article  Google Scholar 

  24. Thompson CV (2000) Annu Rev Mater Sci 30:159

    Article  CAS  Google Scholar 

  25. Grunze M, Hirschwald W, Hofmann D (1981) J Cryst Growth 52:24

    Article  Google Scholar 

  26. Cassir M, Goubin F, Bernay C, Vernoux P, Lincot D (2002) Appl Surf Sci 193:120

    Article  CAS  Google Scholar 

  27. Buschow KHJ, Cahn RW, Flemings MC, Kramer EJ, Mahajan S, Veyssière P (2001) Amorphous semiconductors localization. In: The encyclopedia of materials: science and technology. Elsevier Science Ltd., New York, pp 277–283

  28. Bin WU, Chen CY, Zhang S, Wang W, Liao K (1998) J Mater Sci Technol 14(2):161

    Google Scholar 

  29. Gao Y, Masuda Y, Ohta H, Koumoto K (2004) Chem Mater 16:2615

    Article  CAS  Google Scholar 

  30. French RH, Glass SJ, Ohuchi FS, Xu YN, Ching WY (1994) Phys Rev B 49:5133

    Article  CAS  Google Scholar 

  31. Liang J, Deng Z, Jiang X, Li F, Li Y (2002) Inorg Chem 41:3602

    Article  CAS  Google Scholar 

  32. Lucoysky G, Hinlke CL, Fulton CC, Stoute NA, Seo H, Luning J (2006) Radiat Phys Chem 75:2097

    Article  Google Scholar 

  33. Liopis J (1990) Phys Status Sol A 119:661

    Article  Google Scholar 

  34. Arsenev PA, Bagdasarov KhS, Niklas A, Rhyazantsev AD (1980) Phys Status Sol A 62:395

    Article  CAS  Google Scholar 

  35. Kumar CSSR (2006) Nanomaterials—Toxicity, Health and Environmental Issues. Wiley-VCH, Weinhem

    Google Scholar 

  36. Lopez M, Garrido B, Garcia C, Pellegrino P, Perez-Rodriguez A, Morante JR (2002) Appl Phys Lett 80:1637

    Article  CAS  Google Scholar 

  37. Wilkinson AR, Elliman RG (2004) J Appl Phys 96:4018

    Article  CAS  Google Scholar 

  38. Joy K, Maneeshya LV, Thomas JK, Thomas PV (2012) Thin Solid Films 520:2683

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial assistance of KSCSTE, Govt. of Kerala, India, Major Research Project (2009–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Joy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlin, I.J., Anitha, V.S., Thomas, P.V. et al. Influence of oxygen atmosphere on the photoluminescence properties of sol–gel derived ZrO2 thin films. J Sol-Gel Sci Technol 64, 289–296 (2012). https://doi.org/10.1007/s10971-012-2856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2856-x

Keywords

Navigation