Skip to main content
Log in

Effect of sol temperature on the structure, morphology, optical and photoluminescence properties of nanocrystalline zirconia thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent nanocrystalline zirconia thin films were prepared by sol–gel dip coating technique using Zirconium oxychloride octahydrate as source material on quartz substrates, keeping the sol at room temperature (SET I) and 60 °C (SET II). X-ray diffraction (XRD) pattern shows the formation of mixed phase [tetragonal (T) + monoclinic (M)] in SET I and a pure tetragonal phase in SET II ZrO2 thin films annealed at 400 °C. Phase transformation from tetragonal to monoclinic was achieved in SET II film annealed at 500 °C. Atomic force microscopy analysis reveals lower rms roughness and skewness in SET II film annealed at 500 °C indicating better optical quality. The transmittance spectra gives a higher average transmittance >85% (UV–VIS region) in SET II films. Optical spectra indicate that the ZrO2 films contain direct—band transitions. The sub- band in the monoclinic ZrO2 films introduced interstitial Odefect states above the top of the valance band. The energy bandgap increased (5.57–5.74 eV) in SET I films and decreased (5.74–5.62 eV) in SET II films, with annealing temperature. This is associated with the variations in grain sizes. Photoluminescence (PL) spectra give intense band at 384 and 396 nm in SET I and SET II films, respectively. A twofold increase in the PL intensity is observed in SET II film. The “Red” shift of SET I films and “Blue” shift of SET II films with annealing temperature, originates from the change of stress of the film due to lattice distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New York

    Google Scholar 

  2. Barsoum MW (1997) Fundamentals of ceramics. McGraw-Hill, New York

    Google Scholar 

  3. Uhlmann DR, Suratwala T, Davidson K, Boulton JM, Teowee G (1997) J Non-Cryst Solids 218:113

    Article  CAS  Google Scholar 

  4. Moulton HR (1947) US Patent 2432484, American Optican Co

  5. Motakef S, Suratwala T, Roncone RL, Boulton JM, Teowee G, Uhlmann RR (1994) J Non-Cryst Solids 178:37

    Article  CAS  Google Scholar 

  6. Kirm M, Aarik J, Jürgens M, Sildos I (2005) Nucl Instrum Methods Phys Res A 537:251–255

    Article  CAS  Google Scholar 

  7. Suryanarayana C (1994) Bull Mater Sci 17:307

    Article  CAS  Google Scholar 

  8. Karagedov GR, Lyakhov NZ (1999) Nanostruct Mater 1:559

    Article  Google Scholar 

  9. Wang J, Dongmei W, Jumin X, Beng NgW (1999) J Am Ceram Soc 82:477

    Article  CAS  Google Scholar 

  10. Adak AK, Saha SK, Pramanik P (1997) Nanostruct Mater 8:29

    Article  Google Scholar 

  11. Patil RC, Radhakrishnan S, Pethkar Sushama, Vijay Mohanan K (2001) J Mat Res 16:7

    Article  Google Scholar 

  12. Venataraj S, Kappertz O, Weis H, Drese R, Jayavel R, Wuttig M (2002) J Appl Phys 92:3599–3607

    Article  Google Scholar 

  13. Lai LJ, Lu HC, Chen HK, Cheng BM, Lin MI, Chu TC (2005) J Electron Spectrosc Relat Phenom 144–147:865

    Article  Google Scholar 

  14. Gottmann J, Husmann A, Klotzbucher T, Kreutz EW (1998) Surf Coat Technol 100–101:415

    Article  Google Scholar 

  15. Tuller HL (2000) Solid State Ionics 131:143

    Article  CAS  Google Scholar 

  16. French RH, Glass SJ, Ohuchi FS, Xu YN, Ching WY (1994) Phys Rev B 49:5133

    Article  CAS  Google Scholar 

  17. Gao YF, Masuda Y, Ohta H, Koumoto K (2004) Chem Mater 16:2615

    Article  CAS  Google Scholar 

  18. Emeline AV, Kataeva GV, Litke AS, Rudakova AV, Ryabchuk VK, Serpone N (1998) Langmuir 14:5011

    Article  CAS  Google Scholar 

  19. Chang SM, Doong RA (2007) Chem Mater 4804–4810:19

    Google Scholar 

  20. Emeline AV, Serpone N (2001) Chem Phys Lett 345:105

    Article  CAS  Google Scholar 

  21. Miyazaki S (2002) Appl Surf Sci 190:66–74

    Article  CAS  Google Scholar 

  22. Maeda M, Nakamura K, Kato H, Ohki Y (2005) J Appl Phys 97:54104

    Article  Google Scholar 

  23. Kirm M, Aarik J, Jurgens M, Sildos I (2005) Nucl Instrum Methods Phys Res A 537:251–255

    Article  CAS  Google Scholar 

  24. Mamak M, Coombs N, Ozin G (2000) J Am Ceram Soc 122L:8923

    Google Scholar 

  25. Wang K, Morris MA, Holmes JD, Yu JH, Xu R (2009) Micropor Mesopor Mater 117:161–164

    Article  CAS  Google Scholar 

  26. Atta AK, Biswas PK, Ganguli D (1991) Thin Solid Films 197:187

    Article  CAS  Google Scholar 

  27. Srivasta A, Dongare M (1987) Mater Lett 3:111

    Article  Google Scholar 

  28. Cordova-Martinez W, De la Rosa-Cruz E, Diaz-Torres LA, Salas P, Montoya A, Avendano M, Rodriguez RA, Barbosa-Garcia O (2002) Optical Mater 20:263–271

    Article  CAS  Google Scholar 

  29. Liu H, Peng L, Zhang X, Xue Q (1995) J Phys Chem 99:332

    Article  CAS  Google Scholar 

  30. Moon YT, Park HK, Kim DK, Kim CH (1995) J Am Ceram Soc 78(10):2690

    Article  CAS  Google Scholar 

  31. Basu B (2005) Int Mater Rev 50(4):239

    Article  CAS  Google Scholar 

  32. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, p 388

    Google Scholar 

  33. Cortes A, Gomez H, Marotti RE, Riverosa G, Dalchiele EA (2004) Solar Energy Mater Solar Cells 82:21–34

    Article  CAS  Google Scholar 

  34. Bouvier P, Godlewski J, Lucazeau G (2002) J Nucl Mater 300:118

    Article  CAS  Google Scholar 

  35. Garvie RC (1978) J Phys Chem 82:218

    Article  CAS  Google Scholar 

  36. Kwon J-Y, Yoon T-S, Kim K-B, Min S-H (2003) J Appl Phy 93:6

    Google Scholar 

  37. Tudose IV, Horvath P, Suchea M, Christoulakis S, Kitsopoulos T, Kiriakidis G (2007) J Appl Phys 89:57–62

    CAS  Google Scholar 

  38. Cheng FX, Peng ZY, Xu ZG, Liao CS, Yan CH (1999) Thin Solid Films 339:109–113

    Article  CAS  Google Scholar 

  39. Bang K-H, Hwang D-K, Myoung J-M (2003) Appl Surf Sci 207:359–364

    Article  CAS  Google Scholar 

  40. Ianculescu A, Gartner M, Despax B, Bley V, Leby Th, Gavrila R, Modreanu M (1996) Appl Surf Sci 253:344–348

    Article  Google Scholar 

  41. Du G, Wang J, Wang X, Jiang X, Yang S, Ma Y, Yan W, Gao D, Liu X, Cao H, Xu J, Chang RPH (2003) Vacuum 69:473

    Article  CAS  Google Scholar 

  42. Swanepoel R (1983) J Phys E Sci Instrum 16:1214

    Article  CAS  Google Scholar 

  43. Chambouleyron I, Martinez JM, Morelti AC, Mulato M (1997) Appl Opt 36:8238

    Article  CAS  Google Scholar 

  44. Diaz-Parralejo A, Caruso R, Ortiz AL, Guiberteau F (2004) Thin Solid Films 458:92

    Article  CAS  Google Scholar 

  45. Sreemany M, Bose A, Sen S (2010) Physica B 405:85–93

    Article  CAS  Google Scholar 

  46. Yang C, Fan H, Xi Y, Chen J, Li Z (2008) Appl Surface Sci 254:2685–2689

    Article  CAS  Google Scholar 

  47. Boulouz M, Martin L, Boulouz A, Boyer A (1999) Mater Sci Eng B 67:122

    Article  Google Scholar 

  48. Cameron MA, George SM (1999) Thin Solid Films 348:90–98

    Article  CAS  Google Scholar 

  49. Zhu LQ, Fang Q, He G, Liu M, Zhang LD (2006) Mater Lett 60:888–891

    Article  CAS  Google Scholar 

  50. Kralik B, Chang EK, Louie SG (1998) Phys Rev B 57:7027

    Article  CAS  Google Scholar 

  51. Joo HY, Kim HJ, Kim SJ, Kim SY (1999) J Vac Sci Technol A Vac Surf Films 17(3):862

    Article  CAS  Google Scholar 

  52. Lucovsky G, Hong JG, Fulton CC, Zou Y, Nemanich RJ, Ade H, Scholm DG, Freeouf JL (2004) Phys Status Solidi B 241:2221

    Article  CAS  Google Scholar 

  53. Foster AS, Sulimov VB, Gejo FL, Shluger AL, Nieminen RM (2002) J Non-Cryst Solids 303:101

    Article  CAS  Google Scholar 

  54. Strekalovsky VN, Polejaev YuM, Palguev SV (1987) Oxides with extrinsic disorder Nauka Moscow, Russia

  55. Kiisk V, Lange S, Utt K, Tatte T, Mandar H, Sildos I (2010) Physica B 405:758–762

    Article  CAS  Google Scholar 

  56. Hanus F, Laude LD (1998) Appl Surface Sci 127–129:544–548

    Article  Google Scholar 

  57. Batygov SKh, Vaschchenko VI, Kudryavtsev SV, Klimkovich IM, Lomonova EE (1988) Sov Phys Sol State 30:378

    Google Scholar 

  58. Foster AS, Sulimov VB, Lopez Gejo F, Schluger AL, Nieminen RM (2001) Phys Rev B 64:224108

    Article  Google Scholar 

  59. Mondal P, Klein A, Jaegermann W, Hahn H (1999) Solid State Ionics 118:331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial assistance of UGC, Govt.of India, Major Research Project (F.35-9/2008(SR)) (2009–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Joy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John Berlin, I., Lakshmi, J.S., Sujatha Lekshmy, S. et al. Effect of sol temperature on the structure, morphology, optical and photoluminescence properties of nanocrystalline zirconia thin films. J Sol-Gel Sci Technol 58, 669–676 (2011). https://doi.org/10.1007/s10971-011-2443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2443-6

Keywords

Navigation