Skip to main content
Log in

Investigation of sensing properties of sol–gel processed 4 at%Sb:SnO2/TiO2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work we investigate the gas and photo sensing properties of the antimony doped tin oxide and titanium oxide (4 at%Sb:SnO2/TiO2) nanocrystalline thin films deposited by sol–gel dip-coating. Photoconductivity measurements are carried out under solar light spectra irradiation at different powers. These results show a photo sensitivity of the films in a lateral junction due to interfacial defects. Gas sensitivity was studied at different pressures, and higher conductivity is presented at lower pressure compared to oxygen-rich atmosphere. It occurs due to absence of oxygen adsorption on the semiconductors surface. TiO2 films are also investigated concerning its properties to gas sensing under photo-excitation with InGaN LED light source with wavelength centered in 450 nm. The decay of photo-induced current evaluated under O2 and vacuum atmospheres shows that the sample illumination may contribute to higher gas-sensitivity. This measurement allows determining the charge carrier capture energy, that is related to trapping dominated by distinct defects in each atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)

    Article  Google Scholar 

  2. W. Zeng, T. Liu, Z. Wang, Sensors Actuators B 166–167, 141 (2012)

    Article  Google Scholar 

  3. J. Nisar, Z. Topalian, A. De Sarkar, L. Osterlund, R. Ahuja, ACS Appl. Mater. Interfaces 5, 8516 (2013)

    Article  Google Scholar 

  4. M.H. Boratto, L.V.A. Scalvi, J.L.B. Maciel Jr., M.J. Saeki, E.A. Floriano, Mater. Res. 17, 1420 (2014)

    Article  Google Scholar 

  5. G. Sanon, R. Rup, A. Mansingh, Phys. Rev. B 44, 5672 (1991)

    Article  Google Scholar 

  6. V. Geraldo, L.V.A. Scalvi, P.N. Lisboa-Filho, C. Morilla-Santos, J. Phys. Chem. Solids 67, 1410 (2006)

    Article  Google Scholar 

  7. E.A. Floriano, L.V.A. Scalvi, J.R. Sambrano, A. De Andrade, Appl. Surf. Sci. 267, 164 (2013)

    Article  Google Scholar 

  8. V. Skoromets, H. Němec, J. Kopeček, P. Kužel, K. Peters, D. Fattakhova-Rohlfing, A. Vetushka, M. Müller, K. Ganzerová, A. Fejfar, J. Phys. Chem. C 119, 19485 (2015)

    Article  Google Scholar 

  9. A.G. Milnes, D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions. (Academic Press, New York, 1972)

    Google Scholar 

  10. L.P. Ravaro, L.V.A. Scalvi, M.H. Boratto, Appl. Phys. A 118, 1419 (2014)

    Article  Google Scholar 

  11. R.A. Ramos Jr., M.H. Boratto, M.S. Li, L.V.A. Scalvi, Mater. Res. 20, 866 (2017)

    Article  Google Scholar 

  12. M.H. Boratto, R.A. Ramos Jr., M. Congiu, C.F.O. Graeff, L.V.A. Scalvi, Appl. Surf. Sci. 410, 278 (2017)

    Article  Google Scholar 

  13. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C. Richard, A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798 (2013)

    Article  Google Scholar 

  14. W.G. Oldham, A.G. Milnes, Solid. State. Electron 6, 121 (1963)

    Article  Google Scholar 

  15. I. Kim, W.Y. Choi, Int. J. Nanotechnol. 14, 155 (2017)

    Article  Google Scholar 

  16. M. Kunst, T. Moehl, F. Wünsch, H. Tributsch, Superlattices Microstruct. 39, 376 (2006)

    Article  Google Scholar 

  17. Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, J. Yao, Chem. Mater. 12, 3445 (2000)

    Article  Google Scholar 

  18. B. Levy, W. Liu, S.E. Gilbert, J. Phys. Chem. B 101, 1810 (1997)

    Article  Google Scholar 

  19. R.E. Presley, C.L. Munsee, C.-H. Park, D. Hong, J.F. Wager, D.a Keszler, J. Phys. D. Appl. Phys. 37, 2810 (2004)

    Article  Google Scholar 

  20. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 33715 (2005)

    Article  Google Scholar 

  21. D. Guo, A. Ito, T. Goto, R. Tu, C. Wang, Q. Shen, L. Zhang, J. Adv. Ceram. 2, 162 (2013)

    Article  Google Scholar 

  22. M. Okuya, K. Nakade, S. Kaneko, Sol. Energy Mater. Sol. Cells 70, 425 (2002)

    Article  Google Scholar 

  23. G. Oskam, A. Nellore, R.L. Penn, P.C. Searson, J. Phys. Chem. B 107, 1734 (2003)

    Article  Google Scholar 

  24. L.D. Trino, Desenvolvimento e Otimização de Materiais Nanocristalinos Para Células Solares Sensibilizadas, UNESP (2014)

  25. M.H. Boratto, L.V.A. Scalvi, L.V. Goncharova, G. Fanchini, J. Am. Ceram. Soc. 99, 4000 (2016)

    Article  Google Scholar 

  26. N. Ghobadi, Int. Nano Lett. 3, 2 (2013)

    Article  Google Scholar 

  27. M. Dou, C. Persson, J. Appl. Phys. 113, 83703 (2013)

    Article  Google Scholar 

  28. S. Cardoso, C. Longo, M. De Paoli, Quim. Nov. 28, 345 (2005)

    Article  Google Scholar 

  29. N. Sommer, J. Hupkes, U. Rau, Phys. Rev. Appl. 5, 24009 (2016)

    Article  Google Scholar 

  30. C. Terrier, J.P. Chatelon, J.A. Roger, Thin Solid Films 295, 95 (1997)

    Article  Google Scholar 

  31. G. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6, 215 (2006)

    Article  Google Scholar 

  32. V. Geraldo, V. Briois, L.V.A. Scalvi, C.V. Santilli, J. Phys. Chem. C 114, 19206 (2010)

    Article  Google Scholar 

  33. J. Watson, K. Ihokura, G.S.V Coles, Meas. Sci. Technol 4, 711 (1993)

    Article  Google Scholar 

  34. W. Göpel, G. Rocker, R. Feierabend, Phys. Rev. B 28, 3427 (1983)

    Article  Google Scholar 

  35. D.H. Zhang, H.L. Ma, Appl. Phys. A Mater. Sci. Process 62, 487 (1996)

    Article  Google Scholar 

  36. T.W. Dobson, L.V.A. Scalvi, J.F. Wager, J. Appl. Phys. 68, 601 (1990)

    Article  Google Scholar 

  37. E.A. Morais, L.V.A. Scalvi, J. Mater. Sci. 42, 2216 (2007)

    Article  Google Scholar 

  38. E.A. Morais, L.V.A. Scalvi, A.A. Cavalheiro, A. Tabata, J.B.B. Oliveira, J. Non. Cryst. Solids 354, 4840 (2008)

    Article  Google Scholar 

  39. C.F. Bueno, L.V.A. Scalvi, Thin Solid Films 612, 303 (2016)

    Article  Google Scholar 

  40. E.A. Floriano, L.V.A. Scalvi, M.J. Saeki, J.R. Sambrano, Phys. Chem. A 118, 5857 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Ana H. C. Maciel for her participation in the current–voltage under solar light spectra photoexcitation, Prof. Dr P.N. Lisboa and MSc L.D. Trino for help with TiO2 solution processing. We also would like to thank Prof. Dr C.F.O. Graeff and L.G.S. Albano for solar light simulator and electrical measurement-software interface. This work was financially supported by CAPES, FAPESP (2017/10766-1), AUXE/PROEX (2330/2015), and CNPq (305963/2016-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel H. Boratto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boratto, M.H., Ramos, R.A. & Scalvi, L.V.A. Investigation of sensing properties of sol–gel processed 4 at%Sb:SnO2/TiO2 thin films. J Mater Sci: Mater Electron 29, 467–473 (2018). https://doi.org/10.1007/s10854-017-7935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7935-x

Navigation