Skip to main content
Log in

Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report a study of the role of hexamine in the seeded growth of zinc oxide (ZnO) nanowires by hydrothermal route. We show that the growth can be made highly anisotropic (aspect ratio >150) with almost no detectable increase in diameter (with time of hydrothermal growth) of the obtained nanowires. Results indicate that hexamine acts as a shape inducing molecule, by selectively capping the non-polar crystallographic planes of the zincite crystal. We observe nanowires with typical diameters of ∼30 nm and lengths exceeding several microns after a 24 h growth period at 60–95°C. Our observations, and reports from the literature, suggest that the concentration of the precursors in the chemical bath can significantly affect the growth rate of the wires. By keeping the concentration of the precursors in the bath at 1 mM, we have observed an extremely slow, but highly anisotropic growth of ZnO nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Efros AL, Rosen M (2003) Annu. Rev. Mater. Sci. 30:475

    Article  Google Scholar 

  2. Lee D-D, Lee D-S (2001) IEEE Sensors Journal 1:214

    Article  CAS  Google Scholar 

  3. Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897

    Article  CAS  Google Scholar 

  4. Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ (2002) Appl. Phys. Lett. 81:3648

    Article  CAS  Google Scholar 

  5. Wang ZL (2003) Adv. Mater. 15:432

    Article  Google Scholar 

  6. Law M, Goldberger J, Yang P (2004) Annu. Rev. Mater. Res. 34:83

    Article  CAS  Google Scholar 

  7. Li YB, Bando Y, Sato T, Kurashima K (2002) Appl. Phys. Lett. 81:144

    Article  CAS  Google Scholar 

  8. Dong L, Jiao J, Tuggle DW, Petty JM (2003) Appl. Phys. Lett. 82:1096

    Article  CAS  Google Scholar 

  9. Kim H, Sigmund W (2002) Appl. Phys. Lett. 81:2085

    Article  CAS  Google Scholar 

  10. Shingubara S (2003) Journal of Nanoparticle Research 5:17

    Article  CAS  Google Scholar 

  11. Wang YC, Leu IC, Hon MH (2002) J. Cryst. Growth 237:564

    Article  Google Scholar 

  12. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim f, Yan H (2003) Adv. Mater. 15:353

    Article  CAS  Google Scholar 

  13. Hossain MK, Ghosh SC, Boontongkong Y, Thanachayanont C, Dutta J (2005) J. Metastable Nanocryst. Mater. 23:27

    Article  CAS  Google Scholar 

  14. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Angew. Chem. Int. Ed. 42:3031

    Article  CAS  Google Scholar 

  15. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A (2001) J Phys. Chem. B 105:3350

    Google Scholar 

  16. Vayssieres L (2003) Adv. Mater. 15:464

    Article  CAS  Google Scholar 

  17. Kong XY, Wang ZL (2004) Appl. Phys. Lett. 84:975

    Article  CAS  Google Scholar 

  18. Sugunan A, Warad HC, Thanachayanont C, Dutta J, Hofmann H (2005) In: Vaseashta A, Dimova-Malinovska D, Marshall JM, (eds) Nanostructured and advanced materials for applications in sensor, optoelectronic and photovoltaic technology, Proceedings of the NATO Advanced Study Institute, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 204 (Springer, 2005) (in Print)

  19. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Nature Materials 2:821

    Article  CAS  Google Scholar 

  20. Liou S-C, Hsiao C-S, Chen S-Y (21005) J. Cryst. Growth 274:438

    Article  CAS  Google Scholar 

  21. Lee JH, Leu IC, Hon MH (2005) J. Cryst. Growth 275:e2069

    Article  CAS  Google Scholar 

  22. Govender K, Boyle DS, Kenway PB, O’Brien P (2004) J. Mater. Chem. 14:2575

    Article  CAS  Google Scholar 

  23. Bahnemann DW, Kormann C, Hofmann R (1987) J. Phys. Chem. 91:3789

    Article  CAS  Google Scholar 

  24. Meyer B, Marx D (2003) Phys. Rev. B67:035403

    Google Scholar 

  25. Zhang F, Jin Q, Chan SW (2004) J. Appl. Phys. 95:4319

    Article  CAS  Google Scholar 

  26. Haas PA, Pitt Jr. WW, Robinson SM, Ryon AD (1983) I and EC Product Res. Dev. 22:461

    Article  CAS  Google Scholar 

  27. http://www.sigmaaldrich.com/spectra/rair/RAIR005128.PDF.

  28. Tada H (1960) J. Am. Chem. Soc. 82:255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugunan, A., Warad, H.C., Boman, M. et al. Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. J Sol-Gel Sci Technol 39, 49–56 (2006). https://doi.org/10.1007/s10971-006-6969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-6969-y

Keywords

Navigation