Skip to main content
Log in

Effect of Temperature, Time, Concentration, Annealing, and Substrates on ZnO Nanorod Arrays Growth by Hydrothermal Process on Hot Plate

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Well aligned 1D ZnO nanostructures are important for optoelectronic and nanoscale electronic devices. In this report, 1D ZnO nanorods were synthesized by very simple, low cost, low temperature hydrothermal process. An effect of concentration, growth time, growth temperature, seed layer annealing, and seed layer thickness was investigated. The synthesized ZnO nanorods were characterized by scanning and transmission electron microscopies, X-ray diffraction, Raman and ultraviolet–visible spectroscopies. Growth parameters were found to influence strongly on the morphology, orientation, diameter, length, and density of the ZnO nanorod arrays. The growth temperature 80–90°C, seed layer annealing at 300–400°C, growth time 3 h, 0.025 M precursor concentration, and 0.2–0.3 M seed layer solution concentrations are more favorable conditions for better orientation and excellent crystallinity of the ZnO nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, Y. I. Alivov, C. Liu, et al., J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  2. C. F. Klingshin, Chem. Phys. Chem. 8, 782 (2007).

    Article  Google Scholar 

  3. S. Ranwa, P. K. Kulriya, V. K. Sahu, et al., Appl. Phys. Lett. 105, 213103 (2014).

    Article  ADS  Google Scholar 

  4. Z. L. Wang, ACS Nano 2, 1987 (2008).

    Article  Google Scholar 

  5. L. E. Greene, M. Law, D. H. Tan, et al., Nano Lett. 5, 1231 (2005).

    Article  ADS  Google Scholar 

  6. J. Elias, R. Tena-Zaera, and C. Lévy-Clément, Thin Solid Films 515, 8553 (2007).

    Article  ADS  Google Scholar 

  7. H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, Vacuum 86, 101 (2011).

    Article  ADS  Google Scholar 

  8. L. W. Ji, M. Peng, J. S. Wu, et al., J. Phys. Chem. Solids 70, 1359 (2009).

    Article  ADS  Google Scholar 

  9. C. Li, G. Fang, J. Li, et al., J. Phys. Chem. C 112, 990 (2008).

    Article  Google Scholar 

  10. G. Amin, M. H. Asif, A. Zainelabdin, et al., J. Nanomater. 2011, 269692 (2011).

    Article  Google Scholar 

  11. R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64, 688 (1960).

    Article  Google Scholar 

  12. Y. W. Heo, V. Varadarajan, M. Kaufman, et al., Appl. Phys. Lett. 81, 3046 (2002).

    Article  ADS  Google Scholar 

  13. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).

    Article  ADS  Google Scholar 

  14. C. K. Xu, G. D. Xu, Y. K. Liu, and G. H. Wang, Solid State Commun. 122, 175 (2002).

    Article  ADS  Google Scholar 

  15. B. Q. Cao, M. Lorenz, A. Rahm, et al., Nanotechnology 18, 455707 (2007).

    Article  Google Scholar 

  16. S. Kim, M. C. Jeong, B. Y. Oh, et al., J. Cryst. Growth 290, 485 (2006).

    Article  ADS  Google Scholar 

  17. D. Lin, H. Wu, and W. Pan, Adv. Mater. 19, 3968 (2007).

    Article  Google Scholar 

  18. Z. Zhang, M. Lu, H. Xu, and W. S. Chin, Chem. Eur. J. 13, 632 (2007).

    Article  Google Scholar 

  19. Y. W. Wang, L. D. Zhang, G. Z. Wang, et al., J. Cryst. Growth 234, 171 (2002).

    Article  ADS  Google Scholar 

  20. S. Xu and S. L. Wang, Nano Res., 4 (11), 1013 (2011).

    Article  Google Scholar 

  21. H. Zhang, D. R. Yang, Y. Y. Ma, et al., J. Phys. Chem. B 110, 827 (2006).

    Article  Google Scholar 

  22. P. C. Chang and J. G. Lu, IEEE Trans. Electron Devices 55, 2977 (2008).

    Article  ADS  Google Scholar 

  23. S. Xu, Y. Wei, M. Kirkham, et al., J. Amer. Chem. Soc. 130,14958 (2008).

    Article  Google Scholar 

  24. K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, J. Mater. Chem. 14, 2575 (2004).

    Article  Google Scholar 

  25. S. Xu, N. Adiga, S. Ba, et al., ACS Nano 3, 1803 (2009).

    Article  Google Scholar 

  26. P. Yang, H. Yan, S. Mao, et al., Adv. Funct. Mater. 12, 323 (2002).

    Article  ADS  Google Scholar 

  27. M. Jiao, D. H. Nguyen, V. D. Nguyen, et al., J. Sci. Res. Rep. 9 (5), 1 (2016).

    Google Scholar 

  28. V. Strano, R. G. Urso, M. S. Scuderi, et al., J. Phys. Chem. C 118, 28189 (2014).

    Article  Google Scholar 

  29. Q. Zhang, S. J. Liu, and S. H. Yu, J. Mater. Chem. 19, 191 (2009).

    Article  Google Scholar 

  30. S. N. Heo, F. Ahmed, and B. H. Koo, Ceram. Intern. 40, 5467 (2014).

    Article  Google Scholar 

  31. S. A. Morin, M. J. Bierman, J. Tong, and S. Jin, Science 328, 476 (2010).

    Article  ADS  Google Scholar 

  32. R. T. R. Kumar, E. McGlynn, C. McLoughlin, et al., Nanotechnology 18, 215704 (2007).

    Article  ADS  Google Scholar 

  33. K. H. Kim, K. Utashiro, Y. Abe, and M. Kawamura, Int. J. Electrochem. Sci. 9, 2080 (2014).

    Google Scholar 

  34. K. Umar, B. Karunagaran, E. K. Suh, and Y.B. Hahn, Nanotechnology 17, 4072 (2006).

    Article  ADS  Google Scholar 

  35. H. Sun, M. Luo, W. Weng, et al., Nanotechnology 19, 395602 (2008).

    Article  ADS  Google Scholar 

  36. A. Kushaha, H. Kalita, and M. Aslam, Int. J. Math., Comput., Phys., Electr. Comput. Engin. 7 (2), 203 (2013).

    Google Scholar 

  37. S. Fujihara, C. Sasaki, and T. Kimura, J. Eur. Ceram. Soc. 21, 2109 (2010).

    Article  Google Scholar 

  38. C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films, and Nanostructures (Elsevier, New York, 2006).

    Google Scholar 

  39. B. Ha, H. Ham, and C. J. Lee, J. Phys. Chem. Solids 69, 2453 (2008).

    Article  ADS  Google Scholar 

  40. A. K. Pal and D. G. Mohan, Appl. Surf. Sci. 333, 244 (2015).

    Article  ADS  Google Scholar 

  41. H. A. Wahab, A. A. Salama, A. A. E-Saeid, et al., Results Phys. 3, 46 (2013).

    Article  ADS  Google Scholar 

  42. M. Ahmed and S. R. Dafeh, Chin. Phys. B. 24, 117203 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kamruzzaman.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamruzzaman, M., Zapien, J.A. Effect of Temperature, Time, Concentration, Annealing, and Substrates on ZnO Nanorod Arrays Growth by Hydrothermal Process on Hot Plate. Crystallogr. Rep. 63, 456–471 (2018). https://doi.org/10.1134/S1063774518030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518030112

Navigation