Skip to main content
Log in

Tower-like ZnO nanorods synthesized by using a hydrothermal process

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the effect of growth temperature on the characteristics of Zinc oxide (ZnO) nanorods (NRs) synthesized by using a hydrothermal process. As the temperature was increased in the range of 70 − 200 °C, the diameter of the ZnO NRs varied from 20 to 45 nm, which might be associated with the fusing process. The samples grown at temperatures greater than 150 °C exhibited tower-like tips originating from repeated secondary anisotropic growth to minimize the surface energy by eliminating the polar (002) planes. We also observed that a secondary anisotropic growth occurred simultaneously, with no disturbance of the atomic arrangement, and that the diameters of the tower-like NRs converged to approximately 20 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Look, B. Claflin, Ya. I. Alivov and S. J. Park, Phys. Stat. Sol. (a) 201, 2203 (2004).

    Article  ADS  Google Scholar 

  2. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S-J. Cho and H. Morkoc, J. Appl. Phys. 98, 141301 (2005).

    Article  Google Scholar 

  3. T. Pauporté, D. Lincot, B. Viana and F. Pellé, Appl. Phys. Lett. 89, 233112 (2006).

    Article  ADS  Google Scholar 

  4. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. 13, 113 (2001).

    Article  Google Scholar 

  5. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Jhonson, Y. Zhang, R. J. Saykally and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).

    Article  Google Scholar 

  6. Y. Zhang, R. E. Russo and S. S. Mao, Appl. Phys. Lett. 87, 133115 (2005).

    Article  ADS  Google Scholar 

  7. C. H. Ahn, S. K. Mohanta, N. E. Lee and H. K. Cho, Appl. Phys. Lett. 94, 261904 (2009).

    Article  ADS  Google Scholar 

  8. Y. Li, G. Duan, G. Liu and W. Cai, Chem. Soc. Rev. 42, 3614 (2013).

    Article  Google Scholar 

  9. H. M. Chen et al., ACS Nano 6, 7362 (2012).

    Article  Google Scholar 

  10. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan and L. Vayssieres, Nanotechnology 17, 4995 (2006).

    Article  ADS  Google Scholar 

  11. H. Hu, X. Huang, C. Deng, X. Chen and Y. Qian, Mater. Chem. Phys. 106, 58 (2007).

    Article  Google Scholar 

  12. M. C. Akgun, Y. E. Kalay and H. E. Unalan, J. Mater. Res. 27, 1445 (2012).

    Article  ADS  Google Scholar 

  13. C. Xu and D. Gao, J. Phys. Chem. C 116, 7236 (2012).

    Article  Google Scholar 

  14. H. Zhitao, L. Sisi, C. Kinkui and C. Yong, J. Semicond. 34, 063002 (2013).

    Article  ADS  Google Scholar 

  15. J. M. Wu, Y.-R. Chen and Y.-H. Lin, Nanoscale 3, 1053 (2011).

    Article  ADS  Google Scholar 

  16. S. I. Park, T. S. Cho, S. J. Doh, J. L. Lee and J. H. Je, Appl. Phys. Lett. 77, 349 (2000).

    Article  ADS  Google Scholar 

  17. N. Wang, Y. Cai and R. Q. Zhang, Mater. Sci. Eng. R 60, 1 (2008).

    Article  Google Scholar 

  18. S. Baruah and J. Dutta, J. Sol-Gel. Sci. Technol. 50, 456 (2009).

    Article  Google Scholar 

  19. D. Y. Kim, S.-O. Kim, M. S. Kim, K. G. Yim. J.-Y. Leem, S. Kim and D.-Y. Lee, J. Korean Phys. Soc. 60, 94 (2012).

    Article  ADS  Google Scholar 

  20. X. Zhou, Y. Zhou, J. C. Ku, C. Zhang and C. A. Mirkin, ACS Nano 8, 1511 (2014).

    Article  Google Scholar 

  21. M. K. Dawood, H. Zheng, N. A. Kurniawan, K. C. Leong, Y. L Foo, R. Rajagopalan, S. A. Khan and W. K. Choi, Soft Matter 8, 3549 (2012).

    Article  ADS  Google Scholar 

  22. P. Hu, Y. Liu, X. Wang, L. Fu and D. Zhu, Chem. Commun. 1304 (2003).

    Google Scholar 

  23. D. Deng, S. T. Martin and S. Ramanathan, Nanoscale 2, 2685 (2010).

    Article  ADS  Google Scholar 

  24. Y. Yan, X. Wang, H. Chen, L. Zhou, X. Cao and J. Zhang, J. Phys. D: Appl. Phys. 46, 155304 (2013).

    Article  ADS  Google Scholar 

  25. Z. Zhang et al., J. Phys. Chem. B 110, 8566 (2006).

    Article  Google Scholar 

  26. Z. Wang, X. Qian, J. Yin and Z. Zhu, J. Solid State Chem. 177, 2144 (2004).

    Article  ADS  Google Scholar 

  27. L. Xu. Y. Su, Y. Chen, H. Xiao, L. Zhu, Q. Zhou and S. Li, J. Phys. Chem. B 110, 6637 (2006).

    Article  Google Scholar 

  28. Y. Dai, Y. Zhang, Y. Q. Bai and Z. L. Wang, Chem. Phys. Lett. 375, 96 (2003).

    Article  ADS  Google Scholar 

  29. T. C. Damen, S. P. S. Porto and B. Tell, Phys. Rev. 142, 570 (1966).

    Article  ADS  Google Scholar 

  30. N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu and J. Wu, Opt. Exp. 20, 14857 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyon Chol Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Lee, M.S. & Kang, H.C. Tower-like ZnO nanorods synthesized by using a hydrothermal process. Journal of the Korean Physical Society 66, 229–233 (2015). https://doi.org/10.3938/jkps.66.229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.229

Keywords

Navigation