Skip to main content
Log in

Structure-based functional identification of a novel heme-binding protein from Thermus thermophilus HB8

  • Published:
Journal of Structural and Functional Genomics

Abstract

The TT1485 gene from Thermus thermophilus HB8 encodes a hypothetical protein of unknown function with about 20 sequence homologs of bacterial or archaeal origin. Together they form a family of uncharacterized proteins, the cluster of orthologous group COG3253. Using a combination of amino acid sequence analysis, three-dimensional structural studies and biochemical assays, we identified TT1485 as a novel heme-binding protein. The crystal structure reveals that this protein is a pentamer and each monomer exhibits a β-barrel fold. TT1485 is structurally similar to muconolactone isomerase, but this provided no functional clues. Amino acid sequence analysis revealed remote homology to a heme enzyme, chlorite dismutase. Strikingly, amino acid residues that are highly conserved in the homologous hypothetical proteins and chlorite dismutase cluster around a deep cavity on the surface of each monomer. Molecular modeling shows that the cavity can accommodate a heme group with a strictly conserved His as a heme ligand. TT1485 reconstituted with iron protoporphyrin IX chloride gave a low chlorite dismutase activity, indicating that TT1485 catalyzes a reaction other than chlorite degradation. The presence of a possible Fe–His–Asp triad in the heme proximal site suggests that TT1485 functions as a novel heme peroxidase to detoxify hydrogen peroxide within the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MAD:

multiple wavelength anomalous dispersion

MLI:

muconolactone isomerase

SeMet:

selenomethionine

References

  1. S.J. Cordwell (1999) Arch. Microbiol. 172 269–279 Occurrence Handle10.1007/s002030050780 Occurrence Handle1:CAS:528:DyaK1MXnt1Gnurk%3D Occurrence Handle10550468

    Article  CAS  PubMed  Google Scholar 

  2. A. Osterman R. Overbeek (2003) Curr. Opin. Chem. Biol. 7 238–251 Occurrence Handle10.1016/S1367-5931(03)00027-9 Occurrence Handle1:CAS:528:DC%2BD3sXjtVKgsLY%3D Occurrence Handle12714058

    Article  CAS  PubMed  Google Scholar 

  3. C. Chothia A.M. Lesk (1986) EMBO J. 5 823–826 Occurrence Handle1:CAS:528:DyaL28XitVals7o%3D Occurrence Handle3709526

    CAS  PubMed  Google Scholar 

  4. C.A. Orengo A.E. Todd J.M. Thornton (1999) Curr. Opin. Struct. Biol. 9 374–382 Occurrence Handle10.1016/S0959-440X(99)80051-7 Occurrence Handle1:CAS:528:DyaK1MXks1Wqs78%3D Occurrence Handle10361094

    Article  CAS  PubMed  Google Scholar 

  5. S.A. Teichmann A.G. Murzin C. Chothia (2001) Curr. Opin. Struct. Biol. 11 354–363 Occurrence Handle10.1016/S0959-440X(00)00215-3 Occurrence Handle1:CAS:528:DC%2BD3MXks1GqsLs%3D Occurrence Handle11406387

    Article  CAS  PubMed  Google Scholar 

  6. C. Zhang S.H. Kim (2003) Curr. Opin. Chem. Biol. 7 28–32 Occurrence Handle10.1016/S1367-5931(02)00015-7 Occurrence Handle1:CAS:528:DC%2BD3sXltlaqsA%3D%3D Occurrence Handle12547423

    Article  CAS  PubMed  Google Scholar 

  7. S. Yokoyama H. Hirota T. Kigawa T. Yabuki M. Shirouzu T. Terada Y. Ito Y. Matsuo Y. Kuroda Y. Nishimura Y. Kyogoku K. Miki R. Masui S. Kuramitsu (2000) Nat. Struct. Biol. 7 IssueIDSuppl 943–945 Occurrence Handle1:CAS:528:DC%2BD3cXnvVOgt7s%3D Occurrence Handle11103994

    CAS  PubMed  Google Scholar 

  8. R.L. Tatusov D.A. Natale I.V. Garkavtsev T.A. Tatusova U.T. Shankavaram B.S. Rao B. Kiryutin M.Y. Galperin N.D. Fedorova E.V. Koonin (2001) Nucleic Acids Res. 29 22–28 Occurrence Handle10.1093/nar/29.1.22 Occurrence Handle1:CAS:528:DC%2BD3MXjtlWnsLo%3D Occurrence Handle11125040

    Article  CAS  PubMed  Google Scholar 

  9. D.M. LeMaster F.M. Richards (1985) Biochemistry 24 7263–7268 Occurrence Handle1:CAS:528:DyaL28XitlOm Occurrence Handle3910099

    CAS  PubMed  Google Scholar 

  10. T. Kumasaka M. Yamamoto E. Yamashita H. Moriyama T. Ueki (2002) Structure (Camb) 10 1205–1210 Occurrence Handle10.1016/S0969-2126(02)00830-4 Occurrence Handle1:CAS:528:DC%2BD38XntVaisrk%3D

    Article  CAS  Google Scholar 

  11. Z. Otwinowski W. Minor (1997) Methods Enzymol. 276 307–326 Occurrence Handle1:CAS:528:DyaK2sXivFehsbw%3D

    CAS  Google Scholar 

  12. N. CollaborativeComputational Project (1994) Acta Crystallogr D 50 760–763

    Google Scholar 

  13. T.C. Terwilliger J. Berendzen (1999) Acta Crystallogr. D 55 849–861 Occurrence Handle10.1107/S0907444999000839 Occurrence Handle10089316

    Article  PubMed  Google Scholar 

  14. T.C. Terwilliger (2000) Acta Crystallogr. D 56 965–972 Occurrence Handle10.1107/S0907444900005072 Occurrence Handle10944333

    Article  PubMed  Google Scholar 

  15. D.E. McRee (1999) J. Struct. Biol. 125 156–165 Occurrence Handle10.1006/jsbi.1999.4094 Occurrence Handle1:CAS:528:DyaK1MXis1Krt7k%3D Occurrence Handle10222271

    Article  CAS  PubMed  Google Scholar 

  16. A.T. Brunger P.D. Adams G.M. Clore W.L. DeLano P. Gros R.W. Grosse-Kunstleve J.S. Jiang J. Kuszewski M. Nilges N.S. Pannu R.J. Read L.M. Rice T. Simonson G.L. Warren (1998) Acta Crystallogr. D 54 905–921 Occurrence Handle10.1107/S0907444998003254 Occurrence Handle9757107

    Article  PubMed  Google Scholar 

  17. P.J. Kraulis (1991) J. Appl. Crystallogr. 24 946–950 Occurrence Handle10.1107/S0021889891004399

    Article  Google Scholar 

  18. E.A. Merritt D.J. Bacon (1997) Methods Enzymol 277 505–524 Occurrence Handle1:CAS:528:DyaK2sXntFals7s%3D

    CAS  Google Scholar 

  19. J.A. Christopher (1998) SPOCK: the structural properties observation and calculation kit (program manual). The Center for Macromolecular Design Texas A & M University College Station Texas

    Google Scholar 

  20. P.K. Smith R.I. Krohn G.T. Hermanson A.K. Mallia F.H. Gartner M.D. Provenzano E.K. Fujimoto N.M. Goeke B.J. Olson D.C. Klenk (1985) Anal. Biochem. 150 76–85 Occurrence Handle10.1016/0003-2697(85)90442-7 Occurrence Handle1:CAS:528:DyaL2MXlsFKksL0%3D Occurrence Handle3843705

    Article  CAS  PubMed  Google Scholar 

  21. J.W. Priest S.L. Hajduk (1992) J. Biol. Chem. 267 20188–20195 Occurrence Handle1:CAS:528:DyaK38XlsVGrurg%3D Occurrence Handle1328195

    CAS  PubMed  Google Scholar 

  22. E.A. Berry B.L. Trumpower (1987) Anal. Biochem. 161 1–15 Occurrence Handle10.1016/0003-2697(87)90643-9 Occurrence Handle1:CAS:528:DyaL2sXhvFaitrg%3D Occurrence Handle3578775

    Article  CAS  PubMed  Google Scholar 

  23. S.L. Hazen F.F. Hsu J.P. Gaut J.R. Crowley J.W. Heinecke (1999) Methods Enzymol. 300 88–105 Occurrence Handle1:CAS:528:DyaK1MXltVKg Occurrence Handle9919513

    CAS  PubMed  Google Scholar 

  24. R.F. Beers SuffixJr. I.W. Sizer (1952) J. Biol. Chem. 195 133–140 Occurrence Handle1:CAS:528:DyaG38Xjt12juw%3D%3D Occurrence Handle14938361

    CAS  PubMed  Google Scholar 

  25. C. Zhang S.H. Kim (2000) J. Mol. Biol. 299 1075–1089 Occurrence Handle10.1006/jmbi.2000.3678 Occurrence Handle1:CAS:528:DC%2BD3cXjvVSrsrc%3D Occurrence Handle10843859

    Article  CAS  PubMed  Google Scholar 

  26. J.S. Richardson (1981) Adv. Protein Chem. 34 167–339 Occurrence Handle1:CAS:528:DyaL3MXlsVGgs7c%3D Occurrence Handle7020376

    CAS  PubMed  Google Scholar 

  27. L. Holm C. Sander (1998) Nucleic Acids Res. 26 316–319 Occurrence Handle10.1093/nar/26.1.316 Occurrence Handle1:CAS:528:DyaK1cXovVChsQ%3D%3D Occurrence Handle9399863

    Article  CAS  PubMed  Google Scholar 

  28. A.G. Murzin S.E. Brenner T. Hubbard C. Chothia (1995) J. Mol. Biol. 247 536–540 Occurrence Handle10.1006/jmbi.1995.0159 Occurrence Handle1:CAS:528:DyaK2MXltVGgsr4%3D Occurrence Handle7723011

    Article  CAS  PubMed  Google Scholar 

  29. S.K. Katti B.A. Katz H.W. Wyckoff (1989) J. Mol. Biol. 205 557–571 Occurrence Handle10.1016/0022-2836(89)90226-X Occurrence Handle1:CAS:528:DyaL1MXhtlWgsLs%3D Occurrence Handle2926818

    Article  CAS  PubMed  Google Scholar 

  30. S.F. Altschul T.L. Madden A.A. Schaffer J. Zhang Z. Zhang W. Miller D.J. Lipman (1997) Nucleic Acids Res. 25 3389–3402 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D Occurrence Handle9254694

    CAS  PubMed  Google Scholar 

  31. J.D. Thompson D.G. Higgins T.J. Gibson (1994) Nucleic Acids Res. 22 4673–4680 Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D Occurrence Handle7984417

    CAS  PubMed  Google Scholar 

  32. K.B. Nicholas SuffixJr. N.H.B. D.W.I. Deerfield (1997) EMBNEW. NEWS 4 14

    Google Scholar 

  33. C.G. Ginkel Particlevan G.B. Rikken A.G. Kroon S.W. Kengen (1996) Arch. Microbiol. 166 321–326 Occurrence Handle10.1007/s002030050390 Occurrence Handle8929278

    Article  PubMed  Google Scholar 

  34. K. Stenklo H.D. Thorell H. Bergius R. Aasa T. Nilsson (2001) J. Biol. Inorg. Chem. 6 601–607 Occurrence Handle10.1007/s007750100237 Occurrence Handle1:CAS:528:DC%2BD3MXlsFOntL8%3D Occurrence Handle11472023

    Article  CAS  PubMed  Google Scholar 

  35. V. Kery D. Elleder J.P. Kraus (1995) Arch. Biochem. Biophys. 316 24–29 Occurrence Handle10.1006/abbi.1995.1005 Occurrence Handle1:CAS:528:DyaK2MXjsV2iu7w%3D Occurrence Handle7840623

    Article  CAS  PubMed  Google Scholar 

  36. J. Switala P.C. Loewen (2002) Arch. Biochem. Biophys. 401 145–154 Occurrence Handle10.1016/S0003-9861(02)00049-8 Occurrence Handle1:CAS:528:DC%2BD38Xks1Ggtro%3D Occurrence Handle12054464

    Article  CAS  PubMed  Google Scholar 

  37. A.E. Todd C.A. Orengo J.M. Thornton (2001) J. Mol. Biol. 307 1113–1143 Occurrence Handle10.1006/jmbi.2001.4513 Occurrence Handle1:CAS:528:DC%2BD3MXitlOju7Y%3D Occurrence Handle11286560

    Article  CAS  PubMed  Google Scholar 

  38. D.B. Goodin D.E. McRee (1993) Biochemistry 32 3313–3324 Occurrence Handle10.1021/bi00064a014 Occurrence Handle1:CAS:528:DyaK3sXhs1CitL0%3D Occurrence Handle8384877

    Article  CAS  PubMed  Google Scholar 

  39. G. Michal (Eds) (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology Wiley and Spektrum New York, NY

    Google Scholar 

  40. K.G. Welinder (1992) Curr. Opin. Struct. Biol. 2 388–393 Occurrence Handle10.1016/0959-440X(92)90230-5 Occurrence Handle1:CAS:528:DyaK38XltVKrsLY%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiki Kuramitsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebihara, A., Okamoto, A., Kousumi, Y. et al. Structure-based functional identification of a novel heme-binding protein from Thermus thermophilus HB8. J Struct Funct Genomics 6, 21–32 (2005). https://doi.org/10.1007/s10969-005-1103-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-005-1103-x

Keywords

Navigation