Skip to main content
Log in

Statistical analysis, equilibrium and dynamic study on the biosorption of strontium ions on Chlorella vulgaris

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The strontium (II) uptake on Chlorella vulgaris was studied in a batch system. The interactive effects of parameters such as pretreatment, initial pH, temperature, initial concentration, and biosorbent dosage, on the biosorption of strontium were analyzed using the response surface methodology. The biosorption capacity of the algae at optimal conditions of initial pH 7.4, biosorbent dosage 1 g/L, and initial strontium concentration 300 mg/L for Ca-treated biomass was found to be 98.33 mg/g. Investigation of the kinetics showed that the biosorption process follows the pseudo-second-order model. Also the equilibrium of the process showed a better fit by the Langmuir isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Apted MJ, Ahn J (2017) Repository 101: multiple-barrier geological repository design and isolation strategies for safe disposal of radioactive materials. Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste. Elsevier, pp 3–26

    Chapter  Google Scholar 

  2. Liang L, Guixiang Y (2021) Study on aging management of operating nuclear power plants in China. In: International conference on nuclear engineering. American Society of Mechanical Engineers, p V002T006A003

  3. Pathak P, Gupta DK (2020) Strontium contamination in the environment. Springer

    Book  Google Scholar 

  4. Singh N, Nagpal G, Agrawal S (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240

    Article  Google Scholar 

  5. Feng J, Zhao X, Zhou H, Qiu L, Dai Y, Luo H, Otero M (2020) Removal of strontium by high-performance adsorbents Saccharomyces cerevisiae-Fe3O4 bio-microcomposites. J Radioanal Nucl Chem 326:525–535

    Article  CAS  Google Scholar 

  6. Garbowski T, Charazińska S, Pulikowski K, Wiercik P (2020) Application of microalgae cultivated on pine bark for the treatment of municipal wastewater in cylindrical photobioreactors. Water Environ J 34:949–959

    Article  CAS  Google Scholar 

  7. Ji Y-Q, Hu Y-T, Tian Q, Shao X-Z, Li J, Safarikova M, Safarik I (2010) Biosorption of strontium ions by magnetically modified yeast cells. Sep Sci Technol 45:1499–1504

    Article  CAS  Google Scholar 

  8. Medfu Tarekegn M, Zewdu Salilih F, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6:1783174

    Article  Google Scholar 

  9. Priya A, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M (2022) Biosorption of heavy metals by microorganisms: evaluation of different underlying mechanisms. Chemosphere 307:135957

    Article  CAS  PubMed  Google Scholar 

  10. Rai J, Kumar D, Gaur J (2019) Sorption of malachite green (a cationic dye) and heavy metals by dead biomass of Phormidesmis molle (cyanobacteria)-dominated mat. Water Environ J 33:51–60

    Article  CAS  Google Scholar 

  11. Zheng X, Hu P, Yao R, Cheng J, Chang Y, Mei H, Sun S, Chen S, Wen H (2022) Biosorption behavior and biomineralization mechanism of low concentration uranium (VI) by pseudomonas fluorescens. J Radioanal Nucl Chem 331:4675–4684

    Article  CAS  Google Scholar 

  12. Wang Z, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen J, Chen J (2020) Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ 708:135063

    Article  CAS  PubMed  Google Scholar 

  13. Banerjee S, Kundu A, Dhak P (2022) Bioremediation of uranium from waste effluents using novel biosorbents: a review. J Radioanal Nucl Chem 331:2409–2435

    Article  CAS  Google Scholar 

  14. Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70

    Article  CAS  Google Scholar 

  15. Khani M (2013) Dynamics and thermodynamics studies on the lead and cadmium removal from aqueous solutions by Padina sp. algae: studies in single and binary metal systems. Sep Sci Technol 48:2688–2699

    Article  CAS  Google Scholar 

  16. Khani M, Pahlavanzadeh H, Alizadeh K (2012) Biosorption of strontium from aqueous solution by fungus Aspergillus terreus. Environ Sci Pollut Res 19:2408–2418

    Article  CAS  Google Scholar 

  17. Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK (2022) Biological remediation technologies for dyes and heavy metals in wastewater treatment: new insight. Biores Technol 343:126154

    Article  CAS  Google Scholar 

  18. Amenorfenyo DK, Huang X, Li C, Li F, Zeng Q, Zhang N, Xie L, Wang P (2020) A review of microalgae and other treatment methods of distillery wastewater. Water Environ J 34:988–1002

    Article  CAS  Google Scholar 

  19. Hassan Khani M, Reza Keshtkar A, Meysami B, Firouz Zarea M, Jalali R (2006) Biosorption of uranium from aqueous solutions by nonliving biomass of marinealgae Cystoseira indica. Electron J Biotechnol 9:100. https://doi.org/10.4067/S0717-34582006000200003

    Article  Google Scholar 

  20. Khani M (2012) Biosorption of strontium by a nonliving brown marine agae, Padina sp. Sep Sci Technol 47:1886–1897

    Article  CAS  Google Scholar 

  21. Khani M (2013) Biosorption of strontium by Padina sp. algae biomass: process optimisation and equilibrium study. Int J Environ Technol Manag 16:290–311

    Article  CAS  Google Scholar 

  22. Khani M, Keshtkar A, Ghannadi M, Pahlavanzadeh H (2008) Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae. J Hazard Mater 150:612–618

    Article  CAS  PubMed  Google Scholar 

  23. Khani MH (2011) Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics. Environ Sci Pollut Res 18:1593–1605

    Article  CAS  Google Scholar 

  24. Khani MH (2011) Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass. Environ Sci Pollut Res 18:790–799

    Article  CAS  Google Scholar 

  25. Orabi AH, Abdelhamid AE-S, Salem HM, Ismaiel DA (2020) New adsorptive composite membrane from recycled acrylic fibers and Sargassum dentifolium marine algae for uranium and thorium removal from liquid waste solution. J Radioanal Nucl Chem 326:1233–1247

    Article  CAS  Google Scholar 

  26. Padri M, Boontian N, Piasai C (2022) Comparison of single strain, natural algal communities and a native algal bloom: application for wastewater treatment and biomass generation in cassava biogas effluent. Water Environ J 36:679–693

    Article  CAS  Google Scholar 

  27. Prabhu AA, Chityala S, Jayachandran D, Deshavath NN, Veeranki VD (2021) A two step optimization approach for maximizing biosorption of hexavalent chromium ions (Cr (VI)) using alginate immobilized Sargassum sp in a packed bed column. Sep Sci Technol 56:90–106

    Article  CAS  Google Scholar 

  28. Jampílek J, Kráľová K (2021) Seaweeds as indicators and potential remediators of metal pollution. Plant growth-promoting microbes for xustainable biotic and abiotic stress management. Springer, pp 51–92

    Chapter  Google Scholar 

  29. Park S, Lee M (2017) Removal of copper and cadmium in acid mine drainage using Ca-alginate beads as biosorbent. Geosci J 21:373–383

    Article  CAS  Google Scholar 

  30. Khamseh AAG, Ghorbanian SA, Amini Y, Shadman MM (2023) Investigation of kinetic, isotherm and adsorption efficacy of thorium by orange peel immobilized on calcium alginate. Sci Rep 13:8393. https://doi.org/10.1038/s41598-023-35629-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khamseh AG, Ghorbanian SA (2018) Experimental and modeling investigation of thorium biosorption by orange peel in a continuous fixed-bed column. J Radioanal Nucl Chem 317:871–879

    Article  CAS  Google Scholar 

  32. Zhu W, Li Y, Yu Y, Duan T, Zhou D, Wang L, Zhou J, Kuang M (2018) Environment-friendly bio-materials based on cotton-carbon aerogel for strontium removal from aqueous solution. J Radioanal Nucl Chem 316:553–560

    Article  CAS  Google Scholar 

  33. Wang Z, Hu L, Zhao M, Dai L, Hrynsphan D, Tatsiana S, Chen J (2022) Bamboo charcoal fused with polyurethane foam for efficiently removing organic solvents from wastewater: experimental and simulation. Biochar 4:28

    Article  Google Scholar 

  34. Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69:1775–1787

    Article  CAS  PubMed  Google Scholar 

  35. Behera SK, Meena H, Chakraborty S, Meikap B (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol 28:621–629

    Article  CAS  Google Scholar 

  36. Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR (2019) Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers. Compos B Eng 166:527–541

    Article  CAS  Google Scholar 

  37. Hafeez A, Taqvi SAA, Fazal T, Javed F, Khan Z, Amjad US, Bokhari A, Shehzad N, Rashid N, Rehman S (2020) Optimization on cleaner intensification of ozone production using Artificial Neural Network and Response Surface Methodology: parametric and comparative study. J Clean Prod 252:119833

    Article  Google Scholar 

  38. Khamseh AAG, Amini Y, Shademan MM, Ghazanfari V (2023) Intensification of thorium biosorption onto protonated orange peel using the response surface methodology. Chem Prod Process Model 10:200. https://doi.org/10.1515/cppm-2022-0085

    Article  Google Scholar 

  39. Ugwu EI, Agunwamba JC (2022) Optimization of process parameters for adsorption of hexavalent chromium from wastewater using response surface methodology. Int J Eng Res Afr 59:239–262

    Article  Google Scholar 

  40. Yarahmadi A, Khani MH, Nasiri Zarandi M, Amini Y (2023) Ce (ΙΙΙ) and La (ΙΙΙ) ions adsorption through Amberlite XAD-7 resin impregnated via CYANEX-272 extractant. Sci Rep 13:6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soleymani F, Khani M, Pahlevanzadeh H, Amini Y (2023) Intensification of strontium (II) ion biosorption on Sargassum sp via response surface methodology. Sci Rep 13:5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zarouk C (1966) Contribution a l’etude d’une cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur las Croissance et la Photosynthese de Spirulina maxima. University of Paris, France

  43. Mahmoud A, Fawzy M, Hosny G, Obaid A (2021) Equilibrium, kinetic, and diffusion models of chromium (VI) removal using Phragmites australis and Ziziphus spina-christi biomass. Int J Environ Sci Technol 18:2125–2136

    Article  CAS  Google Scholar 

  44. Hashemipour N, Karimi-Sabet J, Motahari K, Monfared SM, Amini Y, Moosavian MA (2018) Experimental and simulation investigation on separation of binary hydrocarbon mixture by thermogravitational column. J Mol Liq 268:791–806

    Article  CAS  Google Scholar 

  45. Khalifa EB, Rzig B, Chakroun R, Nouagui H, Hamrouni B (2019) Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemom Intell Lab Syst 189:18–26

    Article  Google Scholar 

  46. Marsousi S, Karimi-Sabet J, Moosavian MA, Amini Y (2019) Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem Eng J 356:492–505

    Article  CAS  Google Scholar 

  47. Jahromi PF, Karimi-Sabet J, Amini Y (2018) Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: an optimized separation approach. Chem Eng J 334:2603–2615

    Article  Google Scholar 

  48. Moazzen N, Khanmohammadi M, Bagheri Garmarudi A, Kazemipour M, Ansari Dogaheh M (2019) Optimization and infrared spectrometric evaluation of the mechanical properties of PLA-based biocomposites. J Macromol Sci Part A 56:17–25

    Article  CAS  Google Scholar 

  49. Dvoretsky D, Akulinin E, Dvoretsky S, Temnov M, Androsova A (2016) Defining optimal conditions for Chlorella vulgaris microalgae biomass cell walls disruption in the process of biofuel production. In: Proceedings of the 16th international multidisciplinry scientific geoconference SGEM, pp 261–267

  50. Wayne RO (2009) Plant cell biology: from astronomy to zoology. Academic Press

    Google Scholar 

  51. Tattibayeva Z, Tazhibayeva S, Kujawski W, Zayadan B, Musabekov K (2022) Peculiarities of adsorption of Cr (VI) ions on the surface of Chlorella vulgaris ZBS1 algae cells. Heliyon 8:e10468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bardestani R, Roy C, Kaliaguine S (2019) The effect of biochar mild air oxidation on the optimization of lead (II) adsorption from wastewater. J Environ Manag 240:404–420

    Article  CAS  Google Scholar 

  53. Es-Sahbany H, Hsissou R, El Hachimi M, Allaoui M, Nkhili S, Elyoubi M (2021) Investigation of the adsorption of heavy metals (Cu Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater Today Proc 45:7290–7298

    Article  CAS  Google Scholar 

  54. Sahu UK, Mahapatra SS, Patel RK (2018) Application of Box-Behnken Design in response surface methodology for adsorptive removal of arsenic from aqueous solution using CeO2/Fe2O3/graphene nanocomposite. Mater Chem Phys 207:233–242

    Article  CAS  Google Scholar 

  55. Özer A, Gürbüz G, Çalimli A, Körbahti BK (2009) Biosorption of copper (II) ions on Enteromorpha prolifera: application of response surface methodology (RSM). Chem Eng J 146:377–387

    Article  Google Scholar 

  56. Özer A, Gürbüz G, Çalimli A, Körbahti BK (2008) Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis. J Hazard Mater 152:778–788

    Article  PubMed  Google Scholar 

  57. Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA (2009) Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mater 166:925–930

    Article  CAS  PubMed  Google Scholar 

  58. Kaçan E, Kütahyalı C (2012) Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J Anal Appl Pyrol 97:149–157

    Article  Google Scholar 

  59. Bhatnagar A, Minocha AK, Sillanpää M (2010) Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J 48:181–186

    Article  CAS  Google Scholar 

  60. Montgomery DC (2001) Design and analysis of experiments. John Wiley & Sons, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Gh. Khamseh.

Ethics declarations

Conflict of interest

Authors declare that they have no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, M.H., Khamseh, A.G. Statistical analysis, equilibrium and dynamic study on the biosorption of strontium ions on Chlorella vulgaris. J Radioanal Nucl Chem 332, 3325–3334 (2023). https://doi.org/10.1007/s10967-023-09026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09026-9

Keywords

Navigation