Skip to main content
Log in

Facile synthesis of an environment-friendly cyclodextrin-based polycarboxylic acid polymer for efficient removal of U(VI) and Eu(III)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In our research, a type of cyclodextrin-based polycarboxylic acid polymer (BTCA-β-CD) was prepared by cross-linking β-cyclodextrin (β-CD) and 1,2,3,4-butanetetracarboxylic acid (BTCA) with a green and facile methods, and the adsorption performance of radionuclides such as U(VI) and Eu(III) were systematically studied through batch testing. The results revealed that the obtained maximum adsorption values of BTCA-β-CD for U(VI) and Eu(III) ions were 175.6 and 165.4 mg/g, respectively. The adsorption kinetics on both adsorbents followed pseudo-second-order model. A plausible adsorption mechanism was explored by related characterization, verifying the carboxyl and hydroxyl groups of the polymer work together as adsorption sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xuan C, Yan L, Yun Z, Xiang L (2012) Progress in treatment processes of radioactive wastewater from nuclear accident. Chem Bull 75(6):483–488

    Google Scholar 

  2. Xiao DY, Tao S (2019) Discussion on the treatment of radioactive waste in nuclear power station. Technol SME 1:11–12

    Google Scholar 

  3. Yao YH, Han FH, Runping S (2018) Research progress of radioactive wastewater treatment technology. Appl Chem Ind 47:185–189

    Google Scholar 

  4. Luo X, Zhang G, Wang X, Gu P (2013) Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium. J Radioanal Nucl Chem 298(2):931–939

    Article  CAS  Google Scholar 

  5. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356

    Article  CAS  PubMed  Google Scholar 

  6. Alharbi NS, Hu B, Hayat T, Rabah SO, Wang X (2020) Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front Chem Sci Eng 14:1124–1135

    Article  CAS  Google Scholar 

  7. Hongbin M, Xinyu W, Xiaowei X, Yuan F, Guoliang W, Yichuan W (2016) Research progress of application of ion exchange technology on the removal of trace radionuclides from liquid radioactive waste innuclear power plant. Technol Water Treat 42:7–11

    Google Scholar 

  8. Liu H, Wang J (2013) Treatment of radioactive wastewater using direct contact membrane distillation. J Hazard Mater 261:307–315

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Pang HW, Wang XX, Yu SJ, Chen ZS, Zhang P, Chen L, Song G, Njud SA, Samar OR, Wang XK (2020) Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: a review. Chem Eng J 406:127139

    Article  CAS  Google Scholar 

  10. Fahmy HM, Fouda MMG (2008) Crosslinking of alginic acid/chitosan matrices using polycarboxylic acids and their utilization for sodium diclofenac release. Carbohydr Polym 73(4):606–611

    Article  CAS  PubMed  Google Scholar 

  11. Reddy N, Yang Y (2015) Citric acid cross-linking of starch films. Food Chem 118(3):702–711

    Article  CAS  Google Scholar 

  12. Nesic AR, Trifunovic SS, Grujic AS, Velickovic SJ, Antonovic DG (2011) Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr Res 346(15):2463–2468

    Article  CAS  PubMed  Google Scholar 

  13. Hsieh SH, Zhang ZM, Huang SH (2007) Wastewater absorption onto cotton fabrics cured with chitosan and polycarboxylic acid. Cellul Chem Technol 41(7):423–428

    CAS  Google Scholar 

  14. Zhao F, Repo E, Yin D, Chen L, Kalliola S, Tang J, Iakovleva E, Tam KC, SillanpääM, (2017) One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Sci Rep 7(1):15811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hua SJ, Hu YQ, Zhao L, Cao LY, Wang XQ, Gao JS, Xu CM (2019) Selective removal of thiophene using surface molecularly imprinted polymers based on β-Cyclodextrin porous carbon nanospheres and polycarboxylic acid functional monomers. Energy Fuels 33(12):12637–12646

    Article  CAS  Google Scholar 

  16. Yu F, Chen D, Ma J (2017) Adsorptive removal of ciprofloxacin by ethylene diaminetetraacetic acid/β-cyclodextrin composite from aqueous solution. New J Chem 42:2216–2223

    Article  Google Scholar 

  17. Yang Z, Zhi GZ, Fan Y, Qiu XL (2017) A crosslinked β-cyclodextrin adsorbent and its application in the removal and enrichment rare metals elements. Chn Acad J Elec 4:57

    Google Scholar 

  18. Euvrard L, Morin-Crini N, Druart C, Bugnet J, Crini G (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12(1):1826–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meng Y, Sillanpaa M, Zhao F, Repo E, Yin D (2016) An EDTA-beta-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Colloid Interface Sci 465:215–224

    Article  PubMed  CAS  Google Scholar 

  20. Tolba AA, Mohamady S, Hussien S, Akashi T, Sakai Y, Galhoum A, Guibal E (2016) Synthesis and characterization of poly(carboxymethyl)-cellulose for enhanced La(III) sorption. Carbohydr Polym 157:1809–1820

    Article  PubMed  CAS  Google Scholar 

  21. Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  PubMed  Google Scholar 

  22. Schramm C, Amann A (2018) Modification of electrospun, ultra-thin cellulose fibres by means of polycarboxylic acid–based cross-linking agents. Polym Polym Compos 27:55–65

    Google Scholar 

  23. Zhao F, Repo E, Sillanpää M, Meng Y, Yin D, Tang W (2014) Green synthesis of magnetic EDTA- and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Ind Eng Chem Res 54:1271–1281

    Article  CAS  Google Scholar 

  24. Martel B, Ruffin D, Weltrowski M, Lekchiri Y, Morcellet M (2010) Water-soluble polymers and gels from the polycondensation between cyclodextrins and poly(carboxylic acid)s: a study of the preparation parameters. J Appl Polym Sci 97(2):433–442

    Article  CAS  Google Scholar 

  25. Lipeng J, Luo M, Zhang W, Fangqing L, Shujuan F (2015) Three-dimensional graphene oxide/phytic acid composite for uranium(VI) sorption. J Radioanal Nucl Chem 306:507–514

    Article  CAS  Google Scholar 

  26. Wang CL, Gu JC, Wei CM, Bao LF, Wang R, Zhong S (2015) Research of citric acid modified adsorption of Cr (VI) properties of activated carbons. Mater Sci Forum 809–810:901–906

    Google Scholar 

  27. Zhao F, Sillanpää M (2020) Cross-linked chitosan and β-cyclodextrin as functional adsorbents in water treatment. Adv Water Treat. https://doi.org/10.1016/B978-0-12-819216-0.00003-5

    Article  Google Scholar 

  28. Ma N, Liu J, He W, Li Z, Luan Y, Song Y, Garg S (2017) Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. React Funct Polym 117:10–15

    CAS  Google Scholar 

  29. Weltrowski M, Morcellet M, Martel B (2003) Cyclodextrin polymers and/or cyclodextrin derivatives with complexing properties and ion-exchange properties and method for the production thereof. U.S. Patent No. 6660804

  30. Huang W, Hu Y, Li Y, Zhou Y, Niu D, Lei Z, Zhang Z (2017) Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: the roles of cavity and surface functional groups. J Taiwan Inst Chem Eng 82:189–197

    Article  CAS  Google Scholar 

  31. Alimohammadi F, Gashti MP, Shamei A (2012) A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a cross-linking agent. Prog Org Coat 74(3):470–478

    Article  CAS  Google Scholar 

  32. Roosen J, Binnemans K (2013) Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. J Mater Chem A 2:1530–1540

    Article  Google Scholar 

  33. Martel B, Weltrowski M, Ruffin D, Morcellet M (2010) Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: study of the process parameters. J Appl Poly Sci 83(7):1449–1456

    Article  Google Scholar 

  34. Kono H, Nakamura T (2013) Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: synthesis, structural characterization, and bisphenol a adsorption capacity. React Funct Polym 73(8):1096–1102

    Article  CAS  Google Scholar 

  35. Junthip J, Promma W, Sonsupap S, Boonyanusith C (2019) Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butanetetracarboxylic acid. Iran Polym J 28(3):1–11

    Article  CAS  Google Scholar 

  36. Zhao D, Zhao L, Zhu C, Tian Z, Shen X (2009) Synthesis and properties of water-insoluble β-cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier. Carbohydr Polym 78(1):125–130

    Article  CAS  Google Scholar 

  37. Zhao F, Repo E, Yin D, Meng Y, Jafari S, Sillanpaeae M (2015) EDTA-cross-linked β-Cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ Sci Technol 49(17):10570

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Liu H, Li W, Liu K, Tang T, Liu J, Jiang W (2020) One-step synthesis of an environment-friendly cyclodextrin-based nanosponge and its applications for the removal of dyestuff from aqueous solutions. Res Chem Intermed 46:1715–1734

    Article  CAS  Google Scholar 

  39. Zhou Y, Hu Y, Huang W, Cheng G, Cui C, Lu J (2018) A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chem Eng J 341:47–57

    Article  CAS  Google Scholar 

  40. Li W, Liu H, Li L, Liu K, Jiang W (2019) Green synthesis of citric acid-crosslinked β-cyclodextrin for highly efficient removal of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 322(3):2033–2042

    Article  CAS  Google Scholar 

  41. Ji B, Qi H, Yan K, Sun G (2016) Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: i anhydride formation. Cellulose 23:259–267

    Article  CAS  Google Scholar 

  42. Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on bacterium-derived carbon nanofibers. Environ Sci Technol 50:4459–4467

    Article  CAS  PubMed  Google Scholar 

  43. Zhang P, Wang L, Du K, Wang S, Shi W (2020) Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. J Hazard Mater 396:122731

    Article  CAS  PubMed  Google Scholar 

  44. Chen L, Yu X (2007) Effect of humic acid, pH and ionic strength on the sorption of Eu(III) on red earth and its solid component. J Radioanal Nucl Chem 274:187–193

    Article  CAS  Google Scholar 

  45. Zhao F, Repo E, Yin D (2013) Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms. J Colloid Interface Sci 409(11):174–182

    Article  CAS  PubMed  Google Scholar 

  46. Huang Z, Wu Q, Liu S, Liu T, Zhang B (2013) A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions. Carbohydr Polym 97:496–501

    Article  CAS  PubMed  Google Scholar 

  47. Najafi M, Chevinli AS, Srivastava V, Sillanpää M (2019) Augmentation of neodymium ions removal from water using two lanthanides-based MOF: ameliorated efficiency by synergistic interaction of two lanthanides. J Chem Eng Data 64:3105–3112

    Article  CAS  Google Scholar 

  48. Zhang YX, Jia Y (2016) Fluoride adsorption onto amorphous aluminum hydroxide: roles of the surface acetate anions. J Colloid Interface Sci 483:295–303

    Article  CAS  PubMed  Google Scholar 

  49. He J, Li Y, Wang C, Zhang K, Liu J (2017) Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl Surf Sci 426:29–39

    Article  CAS  Google Scholar 

  50. Ma J, Zhao Q, Zhou L, Wen T, Wang J (2019) Mutual effects of U(VI) and Eu(III) immobilization on interpenetrating 3-dimensional MnO2/graphene oxide composites. Sci Total Environ 695:1336961–13369611

    Article  CAS  Google Scholar 

  51. Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  PubMed  CAS  Google Scholar 

  52. Sheng L, Zhou L, Huang Z, Liu Z, Chen Q, Huang G, Adesina AA (2016) Facile synthesis of magnetic chitosan nano-particles functionalized with N/O-containing groups for efficient adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 310:1361–1371

    Article  CAS  Google Scholar 

  53. Zhou SK, Zeng GM, Liu YJ, Jiang HY (2013) Experimental Study on Adsorption Mechanism of U(VI) by Modified CMC. Adv Mater Res 650:231–237

    Article  CAS  Google Scholar 

  54. Wu C, Cai Y, Xu L, Xie J, Liu Z, Yang S, Wang S (2018) Macroscopic and spectral exploration on the removal performance of pristine and phytic acid-decorated titanate nanotubes towards Eu(III). J Mol Liq 258:66–73

    Article  CAS  Google Scholar 

  55. Yu T, Yang J, Wang ZY (2020) Adsorption behaviour of Eu(III) on natural bamboo fibres: effects of pH, humic acid, contact time, and temperature. Nucl Sci Tech 31:32–41

    Article  Google Scholar 

Download references

Acknowledgements

This work was honored to receive the financial support from Nature Science Foundation of China (11375084), Hunan Provincial Innovation Foundation For Postgraduate (CX20200928) and University of South China Innovation Foundation For Postgraduate (193YXC009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Liu, H., Liu, J. et al. Facile synthesis of an environment-friendly cyclodextrin-based polycarboxylic acid polymer for efficient removal of U(VI) and Eu(III). J Radioanal Nucl Chem 329, 1247–1260 (2021). https://doi.org/10.1007/s10967-021-07885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07885-8

Keywords

Navigation