Skip to main content
Log in

Radioactive characteristics and leaching behavior of Ra and Th isotopes on ishikawaite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioactive ishikawaite was characterized and the leaching behavior of U and Th series nuclides from ishikawaite was studied. With the pH values of dilute HCl solutions, the activity ratios of 226Ra/228Ra and 230Th/232Th in the leachate decreased, whereas the activity ratios of 224Ra/228Ra and 228Th/232Th increased. The leaching behavior of annealed ishikawaite was different from that of original ishikawaite. The leaching behavior of U and Th series nuclides is considered due to the different crystallinity and dominant U in ishikawaite as well as due to mineral damages by α-particles and recoiled atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chu T-C, Wang J-L (2000) Radioactive disequilibrium of Uranium and Thorium nuclide series in hot spring and river water from Peitou Hot Spring Basin in Taipei. J Nucl Radiochem Sci 1:5–10. http://www.radiochem.org/j-online.html#JNRS1-1-Chu

  2. Kigoshi K (1971) Alpha-recoil thorium: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science 173:47–48. doi:10.1126/science.173.3991.47

    Article  CAS  Google Scholar 

  3. Innocent C, Malcuit E, Négrel P, Petelet-Giraud E (2013) Leaching experiments on aquifer rocks of the Aquitaine Basin (France): uranium concentrations and activity ratios, preliminary results. Proc Earth Planet Sci 7:381–384. doi:10.1016/j.proeps.2013.03.088

    Article  CAS  Google Scholar 

  4. Kobashi A, Sato J, Saito N (1979) Radioactive disequilibrium with uranium, thorium and radium isotopes leached from euxenite. Radiochem Acta 26:107–111. doi:10.1524/ract.1979.26.2.107

    CAS  Google Scholar 

  5. Kumar A, Karpe RK, Rout S, Gautam YP, Mishra MK, Ravi PM, Tripathi RM (2016) Activity ratios of 234U/238U and 226Ra/228Ra for transport mechanisms of elevated uranium in alluvial aquifers of groundwater in Southwestern (SW) Punjab, India. J Environ Radioact 151:311–320. doi:10.1016/j.jenvrad.2015.10.020

  6. Martin P, Akber RA (1999) Radium isotopes as indicators of adsorption desorption interactions and barite formation in groundwater. J Environ Radioactiv 46:271–286. doi:10.1016/S0265-931X(98)00147-7

    Article  CAS  Google Scholar 

  7. Eyal Y, Fleisher RL (1985) Preferential leaching and the age of radiation damage from alpha decay in minerals. Geochim Cosmochim Acta 49:1155–1164. doi:10.1016/0016-7037(85)90006-7

    Article  CAS  Google Scholar 

  8. Nagai K, Hashimoto E, Sato J (2006) Activity ratios of Ra and Th isotopes in leachate from Monazite. Radioisotopes 55:567–575. doi:10.3769/radioisotopes.55.567

    Article  CAS  Google Scholar 

  9. Nagai K, Kurihara Y, Sato J (2007) Activity ratios of Ra and Th isotopes in leachate from Euxenite. Radioisotopes 56:719–728. doi:10.3769/radioisotopes.56.719

    Article  CAS  Google Scholar 

  10. Nagai K, Takahashi M, Sato J (2007) Activity ratios of Ra and Th isotopes reached from Granite. Radioisotopes 56:811–818. doi:10.3769/radioisotopes.56.811

    Article  CAS  Google Scholar 

  11. Shibata Y, Kimura K (1922) A new mineral of Iwaki Ishikawa. J Chem Soc Jpn 43:648–649. doi:10.1246/nikkashi1921.43.648 (in Japanese)

  12. Hanson SL, Simmons WB, Falster AU, Foord EE, Litche FE (1999) Proposed nomenclature for samarskite-group minerals: new data on ishikawaite and calciosamarskite. Min Mag 63:27–36. http://minmag.geoscienceworld.org/content/63/1/27

  13. Hanson SL, Simmons WB, Falster AU (1996) Ishikawaite, Polycrase, or “SAMARSKITE” in maine pegmatites? Rocks Miner 71:195–196

    Google Scholar 

  14. Danhara T, Hideki I, Kasuya M, Yamashita T, Sumi T (1992) Chishitsu News 455:31–36. https://www.gsj.jp/data/chishitsunews/92_07_03.pdf

  15. Takahashi M, Kurihara Y, Sato J (2007) A simple source preparation for alpha-ray spectrometry of Uranium and Thorium isotopes. Radioisotopes 56:737–740. doi:10.3769/radioisotopes.56.737

    Article  CAS  Google Scholar 

  16. Willard HH, Gordon L (1948) Separation and determination by precipitation from homogeneous solution. Anal Chem 20:165–169. doi:10.1021/ac60014a017

    Article  CAS  Google Scholar 

  17. Saito T, Ueda H, Ohta T, Sato J (2002) Determination of radium concentrations in hot-spring waters with cation exchange resin. J Balneol Soc Jpn 52:3–11. http://www.j-hss.org/journal/back_number/vol52_pdf/vol52no1_003_011.pdf

  18. Lee MH, Lee CW (2000) Preparation of alpha-emitting nuclides by electrodeposition. Nucl Instrum Meth A 447:594–600. doi:10.1016/S0168-9002(99)01190-0

    Article  Google Scholar 

  19. Hashimoto T, Aoyagi Y, Kudo H, Sotobayashi T (1985) Range calculation of alpha-recoil atoms in some minerals using LSS-theory. J Radioanal Nucl Chem 90:415–438. doi:10.1007/BF02060799

    Article  CAS  Google Scholar 

  20. Hashimoto T (1994) Some models of mechanism for decay series disequilibrium in nature. Radioisotopes 43:212–223. doi:10.3769/radioisotopes.43.212

    Article  CAS  Google Scholar 

  21. Huang RM, Walker RM (1967) Fossil alpha-particle recoil tracks: a new method of age determination. Science 155:1103–1106. doi:10.1126/science.155.3766.1103

    Article  CAS  Google Scholar 

  22. Sheng ZZ (1989) Fraction of thorium and uranium isotopes in the acid leaching experiments on monazite. J Radioanal Nucl Chem 134:293–298. doi:10.1007/BF02278266

    Article  Google Scholar 

  23. Sugitani Y, Suzuki Y, Nagashima K (1984) Recovery of the original samarskite structure by heating in a reducing atmosphere. Am Mineral 69:377–379

Download references

Acknowledgements

Authors express thanks to Mrs. Takako Mimori, who was a former teacher in Ishikawa High School, for donation of ishikawaite mineral, to the Emeritus Professor Toshihiro Nakamura for supporting the above study, and to Dr. Kohta Nagai, Nuclear Material Control Center, Tokai Safeguards Center, for agreement for usage of the previous data [8,9,10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Nomura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiobara, R., Komatsubara, K., Kurihara, Y. et al. Radioactive characteristics and leaching behavior of Ra and Th isotopes on ishikawaite. J Radioanal Nucl Chem 313, 361–370 (2017). https://doi.org/10.1007/s10967-017-5325-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5325-8

Keywords

Navigation