Skip to main content
Log in

Effect of coexisting cations on the adsorption of cesium onto poly (β-cyclodextrin)/bentonite composite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel poly(β-cyclodextrin)/bentonite composite (β-CD/BNC) was successfully prepared through graft polymerisation by using ammonium persulphate–sodium bisulphate as initiators, and characterized by FT-IR and EDS. The equilibrium data fit Freundlich isotherm satisfactorily. Adsorption kinetic was fitted with pseudo-second-order. The maximum adsorption capacities for Cs+ by β-CD/BNC in absence and presence of Na+ and Mg2+ were 48.83 ± 0.35, 47.30 ± 0.28, and 42.52 ± 0.85 mg g−1, respectively. Adsorption of Cs+ was suppressed by presence of Mg2+ more than Na+. β-CD/BNC had a higher affinity to Cs+ than Na+ and Mg2+. β-CD/BNC was an effective sorbent for the treatment cesium waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang SB, Hanc C, Wang XK, Nagatsua M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52

    Article  CAS  Google Scholar 

  2. Sawidis T, Tsigaridas K, Tsikritzis L (2010) Cesium-137 monitoring using lichens from W. Macedonia, N. Greece. Ecotox Environ Safe 73(7):1789–1796

    Article  CAS  Google Scholar 

  3. Tateda Y, Tsumune D, Tsubono T (2013) Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. J Environ Radioact 124(5):1–12

    Article  CAS  Google Scholar 

  4. Tsumune D, Tsubono T, Aoyama M, Hirose K (2012) Distribution of oceanic 137Cs from the Fukushima Daiichi Nuclear Power Plant simulated numerically by a regional ocean model. J Environ Radioact 111:100–108

    Article  CAS  Google Scholar 

  5. Buesseler KO, Jayne SR, Fisher NS, Rypina I, Baumann H, Baumann Z (2012) Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Natl Acad Sci USA 109:5984–5988

    Article  CAS  Google Scholar 

  6. Li TT, He F, Dai YD (2016) Prussian blue analog caged in chitosan surface-decorated carbon nanotubes for removal cesium and strontium. J Radioanal Nucl Chem 310(3):1139–1145

    Article  CAS  Google Scholar 

  7. Mao XY, Han FXX, Shao XH, Guo K, McComb J, Arslan Z, Zhang ZY (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotox Environ Safe 125:16–24

    Article  CAS  Google Scholar 

  8. Dwivedi C, Kumar A, Ajish JK, Singh KK, Kumar M, Wattal PK, Bajaj PN (2012) Resorcinol–formaldehyde coated XAD resin beads for removal of cesium ions from radioactive waste: synthesis, sorption and kinetic studies. RSC Adv 2:5557–5564

    Article  CAS  Google Scholar 

  9. Endo M, Yoshikawa E, Muramatsu N, Takizawa N, Kawai T, Unuma H, Sasaki A, Masano A, Takeyama Y, Kahara T (2013) The removal of cesium ion with natural Itaya zeolite and the ion exchange characteristics. J Chem Technol Biotechnol 88(9):1597–1602

    Article  CAS  Google Scholar 

  10. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal ofcesium from low level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172(1):416–422

    Article  CAS  Google Scholar 

  11. Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Viotenko O, Sergienko V (2011) Colloid stable sorbents forcesium removal preparation and application of latex particles functionalized with transition metals ferrocyanides. J Hazard Mater 186(2/3):1343–1350

    Article  CAS  Google Scholar 

  12. Ding N, Kanatzidis MG (2010) Selective incarceration of cesium ions by Venus flytrap action of a flexible framework sulphide. Nat Chem 2:187–191

    Article  CAS  Google Scholar 

  13. Galamboš M, Kufčáková J, Rajec P (2009) Adsorption of cesium on domestic bentonites. J Radioanal Nucl Chem 281:485–492

    Article  Google Scholar 

  14. Lee JO, Cho WJ, Choi H (2013) Sorption of cesium and iodide ions onto KENTEX-bentonite. Environ Earth Sci 70(5):2387–2395

    Article  CAS  Google Scholar 

  15. Belkhiri S, Guerza M, Chouikh S, Boucheffa Y, Mekhalif Z, Delhalle J, Colella C (2012) Textural and structural effects of heat treatment andc-irradiation on Cs-exchanged NaX zeolite, bentonite and their mixtures. Microporous Mesoporous Mater 161:115–122

    Article  CAS  Google Scholar 

  16. He YF, Zhang L, Yan DZ, Liu SL, Wang H (2012) Poly(acrylic acid) modifying bentonite with in situ polymerisation for removing lead ions. Water Sci Technol 65(8):1383–1391

    Article  CAS  Google Scholar 

  17. He Y, Pei M, Xue N, Wang L, Guo W (2016) Synthesis of sodium polyacrylate–bentonite using in situ polymerisation for Pb2+ removal from aqueous solutions. Rsc Adv 6(53):48145–48154

    Article  CAS  Google Scholar 

  18. Xavier CR, Silva APC, Schwingel LC, Borghetti GS, Koester LS (2010) Improvement of genistein content in solid genistein/β-cyclodextrin complexes. Quim Nova 33(3):511–521

    Article  Google Scholar 

  19. Namazi H, Heydari A (2014) Synthesis of β-cyclodextrin-based dendrimer as a novel encapsulation agent. Polym Int 63:1447–1455

    Article  CAS  Google Scholar 

  20. Namazi H, Heydari A, Pourfarzolla A (2014) Synthesis of glycoconjugated polymer based on polystyrene and nanoporous β-cyclodextrin to remove copper (II) from water pollution. Int J Polym Mater Polym Biomater 63(1):1–6

    Article  CAS  Google Scholar 

  21. Heydari A, Sheibani H (2015) Fabrication of poly (β-cyclodextrin-co-citric acid)/bentonite clay nanocomposite hydrogel: thermal and absorption properties. Rsc Adv 5:82438–82449

    Article  CAS  Google Scholar 

  22. Liu HJ, Xie SB, Xia LS, Tang Q, Kang X, Huang F (2016) Study on adsorptive property of bentonite for cesium. Environ Earth Sci 75(2):1–7

    Google Scholar 

  23. Qing YH, Li J, Kang B, Chang SQ, Dai YD, Long Q, Yuan C (2015) Selective sorption mechanism of Cs+ on potassium nickel hex-acyanoferrate(II) compounds. J Radioanal Nucl Chem 304(2):527–533

    Article  CAS  Google Scholar 

  24. Saini AS, Melo JS (2015) Biosorption of uranium by human black hair. J Environ Radioact 142:29–35

    Article  CAS  Google Scholar 

  25. Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46(11):6020–6027

    Article  CAS  Google Scholar 

  26. Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1999) Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J Radioanal Nucl Chem 240(1):59–67

    Article  CAS  Google Scholar 

  27. Wang JS, Hu XJ, Liu YG, Xie SB, Bao ZL (2010) Biosorption of uranium (VI) by immobilized i beads. J Environ Radioact 101:504–508

    Article  CAS  Google Scholar 

  28. Xiao J, Chen YT, Zhao WH, Xu JB (2013) Sorption behavior of U(VI) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid. J Mol Liq 188:178–185

    Article  CAS  Google Scholar 

  29. Liu SJ, Li S, Zhang HX, Wu LP, Sun L (2016) Ma JG (2016) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J Radioanal Nucl Chem 309(2):607–614

    CAS  Google Scholar 

  30. Zong YL, Zhang YD, Lin XY, Ye D, Luo XG, Wang J (2017) Preparation of a novel microsphere adsorbent of prussian blue capsulated in carboxymethyl cellulose sodium for Cs(I) removal from contaminated water. J Radioanal Nucl Chem 311(3):1577–1591

    Article  CAS  Google Scholar 

  31. Chalasani R, Vasudevan S (2012) Cyclodextrin functionalized magnetic iron oxide nanocrystals: a host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media. J Mater Chem 22(30):14925–14931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral Fund of High Education Program (Grant No. 20134324110003), the National Natural Science Foundation of China (Grant No. 11475080), the General Program of the Hunan Provincial Education Department (Grant No. 15C1178), the Graduate Student Research Innovation Project of Hunan Province (CX2016B427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuibo Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xie, S., Wang, T. et al. Effect of coexisting cations on the adsorption of cesium onto poly (β-cyclodextrin)/bentonite composite. J Radioanal Nucl Chem 312, 557–565 (2017). https://doi.org/10.1007/s10967-017-5256-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5256-4

Keywords

Navigation