Skip to main content
Log in

Kinetic investigations of emulsion- and solvent-mediated radiation induced graft copolymerization of glycidyl methacrylate onto nylon-6 fibres

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Kinetic behaviour of graft copolymerisation of glycidyl methacrylate onto nylon-6 fibres in solvent- and emulsion- media was investigated. The order for the dependence of the initial rate of grafting on the monomer concentration for solvent and emulsion grafting systems were found to be 1.65 and 1.57, respectively. The order of dependence of the initial rate of grafting on the absorbed dose was found to be 1.55 for solvent and 0.62 emulsion grafting systems. The results showed that grafting in both systems is controlled by diffusion mechanism and the degree of grafting can be effectively tuned by variation of the grafting parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nasef MM, Güven O (2012) Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions. Prog Polym Sci 37:1597–1656

    Article  CAS  Google Scholar 

  2. Nasef MM, Hegazy E-SA (2004) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 29(6):499–561. doi:10.1016/j.progpolymsci.2004.01.003

    Article  CAS  Google Scholar 

  3. Madrid JF, Ueki Y, Seko N (2013) Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting. Radiat Phys Chem 90:104–110. doi:10.1016/j.radphyschem.2013.05.004

    Article  CAS  Google Scholar 

  4. Ueki Y, Mohamed NH, Seko N, Tamada M (2011) Rapid biodiesel fuel production using novel fibrous catalyst synthesized by radiation-induced graft polymerization. Int J Org Chem 1(2):20–25. doi:10.4236/ijoc.2011.12004

    Article  CAS  Google Scholar 

  5. Wada Y, Tamada M, Seko N, Mitomo H (2008) Emulsion grafting of vinyl acetate onto preirradiated poly(3-hydroxybutyrate) film. J Appl Polym Sci 107(4):2289–2294. doi:10.1002/app.27219

    Article  CAS  Google Scholar 

  6. Nasef MM, Tamada M, Seko N, Abouzari-Lotf E (2014) Advances in the development of functional polymers using radiation induced emulsion polymerization. Recent Res Dev Polym Sci 12:107–128

    Google Scholar 

  7. Ko S, Jang J (2007) Protein immobilization on aminated poly(glycidyl methacrylate) nanofibers as polymeric carriers. Biomacromolecules 8(5):1400–1403

    Article  CAS  Google Scholar 

  8. Nasef MM, Abbasi A, Ting TM (2014) New CO2 adsorbent containing aminated poly(glycidyl methacrylate) grafted onto irradiated PE-PP nonwoven sheet. Radiat Phys Chem 103:72–74. doi:10.1016/j.radphyschem.2014.05.031

    Article  Google Scholar 

  9. Abdelwahab NA, Shukry N (2015) Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Carbohydr Polym 115:276–284. doi:10.1016/j.carbpol.2014.08.052

    Article  CAS  Google Scholar 

  10. Kang PH, Jeun JP, Chung BY, Kim JS, Nho YC (2007) Preparation and characterization of glycidyl methacrylate (GMA) grafted kapok fiber by using radiation induced-grafting technique. J Ind Eng Chem 13(6):956–958

    CAS  Google Scholar 

  11. Madrid JF, Nuesca GM, Abad LV (2013) Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiat Phys Chem 85:182–188. doi:10.1016/j.radphyschem.2012.10.006

    Article  CAS  Google Scholar 

  12. Ting TM, Hoshina H, Seko N, Tamada M (2013) Removal of boron by boron-selective adsorbent prepared using radiation induced grafting technique. Desalination Water Treat 51(13–15):2602–2608. doi:10.1080/19443994.2012.749054

    Article  CAS  Google Scholar 

  13. Ikeda K, Umeno D, Saito K, Koide F, Miyata E, Sugo T (2011) Removal of boron using nylon-based chelating fibers. Ind Eng Chem Res 50(9):5727–5732

    Article  CAS  Google Scholar 

  14. Seko N, Bang LT, Tamada M (2007) Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate. Nucl Instrum Methods Phys Res Sect B 265(1):146–149. doi:10.1016/j.nimb.2007.08.041

    Article  CAS  Google Scholar 

  15. Sekine A, Seko N, Tamada M, Suzuki Y (2010) Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric. Radiat Phys Chem 79(1):16–21. doi:10.1016/j.radphyschem.2009.08.007

    Article  CAS  Google Scholar 

  16. Yu M, Zhang B, Deng B, Yang X, Sheng K, Xie L, Lu X, Li J (2010) Preirradiation-induced emulsion graft polymerization of glycidyl methacrylate onto poly(vinylidene fluoride) powder. J Appl Polym Sci 117(6):3575–3581

    CAS  Google Scholar 

  17. Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H (2007) Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40(17):6283–6290. doi:10.1021/ma070039p

    Article  CAS  Google Scholar 

  18. Ting TM, Nasef MM, Hashim K (2016) Evaluation of boron adsorption on new radiation grafted fibrous adsorbent containing N-methyl-d-glucamine. J Chem Technol Biotechnol 91(7):2009–2017

    Article  CAS  Google Scholar 

  19. Kaur I, Barsola R, Misra BN, Chauhan GS (2000) Radiochemical graft copolymerisation of 2-hydroxy ethylmethacrylate onto polyamide-6, 6-nylon. Def Sci J 50:425–433

    Article  CAS  Google Scholar 

  20. Timus DM, Cincu C, Bradley DA, Craciun G, Mateescu E (2000) Modification of some properties of polyamide-6 by electron beam induced grafting. Appl Radiat Isot 53:937–944

    Article  CAS  Google Scholar 

  21. Jeun JP, Hua ZJ, Kang PH, Nho YC (2010) Electron-beam-radiation-induced grafting of acrylonitrile onto polypropylene fibers: influence of the synthesis conditions. J Appl Polym Sci 115:222–228

    Article  CAS  Google Scholar 

  22. Gupta B, Anjum N, Gupta AP (2000) Development of membranes by radiation grafting of acrylamide into polyethylene films: influence of synthesis conditions. J Appl Polym Sci 77(6):1331–1337

    Article  CAS  Google Scholar 

  23. Walsby N, Paronen M, Juhanoja J, Sundholm F (2000) Radiation grafting of styrene onto poly(vinylidene fluoride) films in propanol: the influence of solvent and synthesis conditions. J Polym Sci Part A 38(9):1512–1519

    Article  CAS  Google Scholar 

  24. Rohani R, Nasef MM, Saidi H, Dahlan KZM (2007) Effect of reaction conditions on electron induced graft copolymerization of styrene onto poly(ethylene-co-tetrafluoroethylene) films: kinetics study. Chem Eng J 132(1–3):27–35. doi:10.1016/j.cej.2007.01.011

    Article  CAS  Google Scholar 

  25. Li J, Sato K, Ichiduri S, Asano S, Ikeda S, Iida M, Oshima A, Tabata Y, Washio M (2004) Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I. Influence of styrene grafting conditions. Eur Polym J 40(4):775–783

    Article  CAS  Google Scholar 

  26. Cardona F, George GA, Hill DJT, Perera S (2003) Comparative study of the radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) and polypropylene substrates. I: kinetics and structural investigation. Polym Int 52(5):827–837. doi:10.1002/pi.1181

    Article  CAS  Google Scholar 

  27. Nasef MM, Saidi H, Dahlan KZM (2011) Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films. Radiat Phys Chem 80(1):66–75. doi:10.1016/j.radphyschem.2010.08.010

    Article  Google Scholar 

  28. Sithambaranathan P, Nasef MM, Ahmad A (2015) Kinetic behaviour of graft copolymerisation of nitrogenous heterocyclic monomer onto EB-irradiated ETFE films. J Radioanal Nucl Chem 304:1225–1234

    Article  CAS  Google Scholar 

  29. Gürsel SA, Youcef HB, Wokaun A, Scherer GG (2007) Influence of reaction parameters on grafting of styrene into poly(ethylene-alt tetrafluoroethylene) films. Nucl Instrum Methods Phys Res Sect B 265:198–203

    Article  Google Scholar 

  30. Ting TM, Nasef MM, Hashim K (2015) Kinetics of radiation-induced graft copolymerization of vinylbenzyl chloride onto nylon fibers. Appl Mech Mater 719–720:63–66

    Article  Google Scholar 

  31. Rager T (2003) Pre-irradiation grafting of styrene/divinylbenzene onto poly(tetrafluoroethylene-co-hexafluoropropylene) from non-solvents. Helv Chim Acta 86:1966–1981

    Article  CAS  Google Scholar 

  32. Niemoller A, Ellinghorst G (1987) Radiation initiated grafting on fluoro polymers III. Grafting of N-vinylpyrrolidone in aqueous solution on poly(vinylidene fluoride) films by accelerated electrons. Die Angew Makromol Chem 148:1–18

    Article  Google Scholar 

  33. Ting TM, Nasef MM, Hashim K (2015) Modification of nylon-6 fibres by radiation-induced graft polymerisation of vinylbenzyl chloride. Radiat Phys Chem 109:54–62

    Article  CAS  Google Scholar 

  34. Hegazy E-SA, Dessouki AM, El-Assy NB, El-Sawy NM, El-Ghaffar MAA (1992) Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers. I. Kinetic study on the grafting onto poly(tetrafluoroethylene-ethylene) copolymer. J Polym Sci Part A 30:1969–1976

    Article  CAS  Google Scholar 

  35. Hegazy E-SA, Ishigaki I, Okamoto J (1981) Radiation grafting of acrylic acid onto fluorine-containing polymers. I. Kinetic study of pre-irradiation grafting onto poly(tetrafluoroethylene). J Appl Polym Sci 26:3117–3124

    Article  CAS  Google Scholar 

  36. Gupta B, Buchi FN, Scherer GG (1994) Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. I. Influence of synthesis conditions. J Polym Sci Part A 32(10):1931–1938

    Article  CAS  Google Scholar 

  37. Rager T (2004) Parameter study for the pre-irradiation grafting of styrene/divinylbenzene onto poly (tetrafluoroethylene-co-hexafluoropropylene) from isopropanol solution. Helv Chim Acta 87(2):400–407

    Article  CAS  Google Scholar 

  38. Henkensmeier D, Benyoucef H, Wallasch F, Gubler L (2013) Radiation grafted ETFE-graft-poly(α-methylstyrenesulfonic acid-co-methacrylonitrile) membranes for fuel cell applications. J Membr Sci 447:228–235

    Article  CAS  Google Scholar 

  39. Herman H, Slade RCT, Varcoe JR (2003) The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation. J Membr Sci 218(1–2):147–163. doi:10.1016/s0376-7388(03)00167-4

    Article  CAS  Google Scholar 

  40. Nasef MM, Sugiarmawan IA (2010) Radiation induced emulsion grafting of glycidyl methacrylate onto high density polyethylene: a kinetic study. J Fundam Sci 6:93–97

    Google Scholar 

  41. Pant HR, W-i Baek, Nam K-T, Jeong I-S, Barakat NAM, Kim HY (2011) Effect of lactic acid on polymer crystallization chain conformation and fiber morphology in an electrospun nylon-6 mat. Polymer 52(21):4851–4856. doi:10.1016/j.polymer.2011.08.059

    Article  CAS  Google Scholar 

  42. Giller CB, Chase DB, Rabolt JF, Snively CM (2010) Effect of solvent evaporation rate on the crystalline state of electrospun nylon 6. Polymer 51(18):4225–4230. doi:10.1016/j.polymer.2010.06.057

    Article  CAS  Google Scholar 

  43. Ting TM, Nasef MM, Hashim K (2015) Tuning N-methyl-d-glucamine density in new radiation grafted poly(vinylbenzyl chloride)/nylon-6 fibrous boron-selective adsorbent using response surface method. RSC Adv 5:37869–37880

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by MOSTI E-Science Fund (03-03-01-SF0058) and Malaysian Nuclear Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teo Ming Ting or Mohamed Mahmoud Nasef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, T.M., Nasef, M.M. & Sithambaranathan, P. Kinetic investigations of emulsion- and solvent-mediated radiation induced graft copolymerization of glycidyl methacrylate onto nylon-6 fibres. J Radioanal Nucl Chem 311, 843–857 (2017). https://doi.org/10.1007/s10967-016-5100-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5100-2

Keywords

Navigation