Skip to main content
Log in

Effect of parameters of thermal treatment of resorcinol–formaldehyde resins on their chemical stability and 137Cs uptake efficiency

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The paper describes the solution of the problem of low chemical stability of resorcinol–formaldehyde resins in alkaline media. As was found using differential thermal analysis and 13C NMR, the temperature increase yielded the increase of the degree of the resin polymer network crosslinking. The relationship between the resorcinol–formaldehyde resins solidification temperature and their stability in alkaline media has been established for the first time: this will enable one to solve the problem of decontamination of large amounts of liquid media with high pH from 137Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IAEA (2006) Improvements of radioactive waste management at WWER nuclear power plants. International Atomic Energy Agency, Vienna. http://www-pub.iaea.org/MTCD/publications/PDF/te_1492_web.pdf. Accessed 25 mar 2014

  2. Duignan MR, Nash CA (2010) Removal of cesium from Savannah River site waste with spherical resorcinol formaldehyde ion exchange resin: experimental tests. Sep Sci Technol 45:1828–1840. doi:10.1080/01496395.2010.493105

    Article  CAS  Google Scholar 

  3. Raj K, Prasad KK, Bansal NK (2006) Radioactive waste management practices in India. Nucl Eng Des 236:914–930. doi:10.1016/j.nucengdes.2005.09.036

    Article  CAS  Google Scholar 

  4. Fiskum SK, Blanchard DL, Steele MJ et al (2006) Spherical Resorcinol-Formaldehyde Resin Testing for Cesium Removal from Hanford Tank Waste Simulant. Sep Sci Technol 41:2461–2474. doi:10.1080/01496390600742740

    Article  CAS  Google Scholar 

  5. Hubler T, Franz J, Shaw W et all. (1995) Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (RF) ion-exchange resin. Report PNL-10744. Pacific Northwest Laboratory, Richland Wash. doi: 10.2172/110245

  6. Shelkovnikova LA, Gavlina OT, Ivanov VA (2011) Stability of phenol-formaldehyde ion-exchange sorbents in aqueous solutions. Russ J Phys Chem A 85:1652–1659. doi:10.1134/S0036024411090251

    Article  CAS  Google Scholar 

  7. Dwivedi C, Kumar A, Ajish JK et al (2012) Resorcinol-formaldehyde coated XAD resin beads for removal of cesium ions from radioactive waste: synthesis, sorption and kinetic studies. RSC Adv 2:5557. doi:10.1039/c2ra20054f

    Article  CAS  Google Scholar 

  8. Dwivedi C, Kumar A, Juby KA et al (2012) Preparation and evaluation of alginate-assisted spherical resorcinol–formaldehyde resin beads for removal of cesium from alkaline waste. Chem Eng J 200–202:491–498. doi:10.1016/j.cej.2012.06.081

    Article  Google Scholar 

  9. Miller HS, Kline GE (1951) Reactions of cesium in trace amounts with ion-exchange Resins. J Am Chem Soc 73:2741–2743. doi:10.1021/ja01150a091

    Article  CAS  Google Scholar 

  10. Kargov SI, Shelkovnikova LA, Ivanov VA (2012) The nature of ion exchange selectivity of phenol-formaldehyde sorbents with respect to cesium and rubidium ions. Russ J Phys Chem A 86:860–866. doi:10.1134/S0036024412050159

    Article  CAS  Google Scholar 

  11. Samanta SK, Misra BM (1995) Ion exchange selectivity of a resorcinol-formaldehyde polycondensate resin for cesium in relation to other alkali metal ions. Solvent Extr Ion Exch 13:575–589. doi:10.1080/07366299508918292

    Article  CAS  Google Scholar 

  12. Hubler T, Shaw W, Brown G, et al. (1996) Chemical derivation to enhance the chemical/oxidative stability of resorcinol-formaldehyde (R-F) resin. Report PNNL-11327. Pacific Northwest National Lab, Richland, WA. doi: 10.2172/394364

  13. Bibler JP, Wallace RM (1995) Cesium-specific phenolic ion exchange resin. Patent US 5441991

  14. Werstler DD (1986) Quantitative 13C n.m.r. characterization of aqueous formaldehyde resins: 2. Resorcinol-formaldehyde resins. Polymer (Guildf) 27:757–764. doi:10.1016/0032-3861(86)90136-9

    Article  CAS  Google Scholar 

  15. Kim MG, Wu Y, Amos LW (1997) Polymer structure of cured alkaline phenol-formaldehyde resol resins with respect to resin synthesis mole ratio and oxidative side reactions. J Polym Sci Part A: Polym Chem 35:3275–3285. doi:10.1002/(SICI)1099-0518(19971115)35:15<3275:AID-POLA21>3.0.CO;2-7

    Article  CAS  Google Scholar 

  16. Durairaj RB (2005) Resorcinol: Chemistry, Technology and Applications. Springer-Verlag, Berlin. doi:10.1007/3-540-28090-1

    Google Scholar 

  17. Bachmann A, Müller K (1973) Phenoplaste. Deutscher Verlag f, Grundstoffindustrie

    Google Scholar 

  18. Nikolayev AF (1966) Synthetic polymers and plastics on based on them. Khimiya, Leningrad

    Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Scientific Fund (Project 14-13-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Egorin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorin, A.M., Tutov, M.V., Didenko, N.A. et al. Effect of parameters of thermal treatment of resorcinol–formaldehyde resins on their chemical stability and 137Cs uptake efficiency. J Radioanal Nucl Chem 304, 281–286 (2015). https://doi.org/10.1007/s10967-014-3758-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3758-x

Keywords

Navigation