Skip to main content
Log in

Investigation of cesium uptake from aqueous solutions using new titanium phosphates ion-exchangers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uptake of cesium from aqueous solutions (pH 5) using titanium phosphates was investigated in the absence and presence of background electrolyte (0.1 M NaNO3) using a batch technique. The determination of cesium was performed by gamma spectroscopy using 137Cs as tracer. The obtained sorption isotherms could be satisfactorily reproduced by a Langmuir sorption equation. The maximum uptake capacity values (q max) calculated fitting the experimental data by this equation were 167 and 118 mg/g for solutions of initial pH 5 in the absence and presence of background electrolyte. Kinetics data obtained at 293, 308 and 323 K could satisfactorily reproduced by the pseudo-second order equation. It was demonstrated that the new synthesized materials can remove considerable amounts of cesium from aqueous solutions and ion exchange is considered to be the principal mechanism for cesium removal. Toxicity characteristic leaching procedure and desorption tests provided data about the application of the sorbents in environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pb and 7Be for assessing soil erosion and sedimentation, a review. J Environ Radioact 99:1799–1807

    Article  CAS  Google Scholar 

  2. Choppin GR, Khankhasayev MK (eds) (1999) Chemical separation technologies and related methods of nuclear waste management: applications, problems and research needs. Dordrecht, Kluwer

    Google Scholar 

  3. Report No. 154, Cesium-137 in the Environment: radioecology and approaches to assessment and management radiation protection: a memoir of the national radiological protection board, IP Address: 155.207.64.236 (downloaded on 21/03/2014)

  4. Song KC, Lee HK, Moon H, Lee KJ (1997) Simultaneous removal of the radiotoxic nuclides Cs-137 and I-129 from aqueous solution. Sep Purif Technol 12:215–227

    Article  CAS  Google Scholar 

  5. Chao XuC, Wang J, Chen J (2012) Solvent extraction of strontium and cesium: a review of recent progress. Solv Extr Ion Exch 30(6):623–650

    Article  Google Scholar 

  6. Yavari R, Huang YD, Ahmadi SJ, Bagheri G (2010) Uptake behavior of titanium molybdophosphate for cesiumand strontium. J Radioanal Nucl Chem 286:223–229

    Article  CAS  Google Scholar 

  7. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422

    Article  CAS  Google Scholar 

  8. Yıldız B, Erten HN, Kıs M (2011) The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288:475–483

    Article  Google Scholar 

  9. Shahwan T, Erten HN (2002) Thermodynamic parameters of Cs+ sorption on natural clays. J Radioanal Nucl Chem 253(1):115–120

    Article  CAS  Google Scholar 

  10. Galamboš M, Paučová V, Kufčáková J, Rosskopfová O, Rajec P, Adamcová R (2010) Cesium sorption on bentonites and montmorillonite K10. J Radioanal Nucl Chem 284(1):55–64

    Article  Google Scholar 

  11. Sheha RR, Metwally E (2007) Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. J Hazard Mater 143:354–361

    Article  CAS  Google Scholar 

  12. Yavari R, Ahmadi SJ, Huang YD, Khanchi AR, Bagheri G, He JM (2009) Synthesis, characterization and analytical application of a new inorganic cation exchanger—Titanium(IV) molybdophosphate. Talanta 77:1179–1184

    Article  CAS  Google Scholar 

  13. Clearfield A (1982) Inorganic ion exchange materials. CRC Press, Boca Raton

    Google Scholar 

  14. Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177(6):1817–1828

    Article  CAS  Google Scholar 

  15. Kremlyakova NY, Komarevsky VM (1997) Sorption of alkaline and alkaline-earth radionuclides on zirconium phosphate sorbent Termoxid-3A from aqueous solutions. J Radioanal Nucl Chem 218(2):197–200

    Article  CAS  Google Scholar 

  16. Murthy GS, Sivaiah MV, Kumar SS, Reddy VN, Krishna RM, Lakshminarayana S (2004) Adsorption of cesium on a composite inorganic exchanger zirconium phosphate: ammonium molybdophosphate. J Radioanal Nucl Chem 260(1):109–114

    Article  CAS  Google Scholar 

  17. Lebedev VN, Mel’nik NA, Rudenko AV (2003) Sorption of cesium on titanium and zirconium phosphates. Radiochemistry 45(2):149

    Article  CAS  Google Scholar 

  18. Bortun AI, Khainakov SA, Bortun LN, Jaimez E, Garcia JR, Clearfield A (1999) Synthesis and characterization of a novel layered tin(IV) phosphate with ion exchange properties. Mater Res Bull 34(6):921–932

    Article  CAS  Google Scholar 

  19. Orechovska J, Rajec P (1999) Sorption of cesium on composite sorbents based on nickel ferrocyanide. J Radioanal Nucl Chem 242(2):387–390

    Article  CAS  Google Scholar 

  20. Antony RG, Philip CV, Dosch RG (1993) Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates. Waste Manage 13:503–512

    Article  Google Scholar 

  21. Maslova MV, Rusanova D, Naydenov V, Antzutkin ON (2008) Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates. Inorg Chem 47:11351–11360

    Article  CAS  Google Scholar 

  22. Maslova MV, Gerasimova LG, Okhrimenko RF, Chugunov AS (2006) Composition of ion-exchange materials based on titanium phosphate. Russ J Appl Chem 79(11):1793–1797

    Article  CAS  Google Scholar 

  23. Shabana EI, El-Dessouky MI (2002) Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. J Radioanal Nucl Chem 253(2):281–284

    Article  CAS  Google Scholar 

  24. (1992) Toxicity characteristic leaching procedure. Washington, DC. http://www.epa.gov/sw-846/pdfs/1311.pdf. Accessed 30 March 2013

  25. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  26. Freundlich HF (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  27. Lagergren S (1898) Zur theorie der sogenannten adsorption geloester stoffe, Kungliga Svenska Vetenskapsakad. Handl 24:1–39

    Google Scholar 

  28. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Noli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapnisti, M., Hatzidimitriou, A.G., Noli, F. et al. Investigation of cesium uptake from aqueous solutions using new titanium phosphates ion-exchangers. J Radioanal Nucl Chem 302, 679–688 (2014). https://doi.org/10.1007/s10967-014-3286-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3286-8

Keywords

Navigation