Skip to main content
Log in

Uptake behavior of titanium molybdophosphate for cesium and strontium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study investigates uptake of cesium and strontium from aqueous solution similar to nuclear waste on three samples of titanium molybdophosphate (TMP) synthesized under various conditions. Effects of concentration of sodium nitrate, pH and contact time on the uptake of cesium and strontium have been studied by bath method. The results showed that TMP has high affinity toward cesium and strontium at pH > 2 and relatively low concentration of sodium nitrate. Kinetic data indicated that cesium uptake process to achieve equilibrium was faster than strontium. Cesium and strontium breakthrough curves were examined at 25 °C using column packed with H3O+ form of TMP and breakthrough curves showed symmetrical S-shaped profiles. At the same time, the calculated breakthrough capacity for cesium was higher than strontium. The results of desorption studies showed that over 99% of cesium and strontium was washed out of column by using 4 M NH4Cl solution. This study suggests that TMP can have great potential applications for the removal of strontium and specially cesium from nuclear waste solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Enarsson A, Landgren A, Liljenzin JO, Skalberg M, Spjuth L, Gudowski W, Wallenius J (1998) Partitioning and transmutation (P&T). SKB Annual Report TR-98-14

  2. Elvers B, Hawkins B, Schulz S (1990) Radionuclides; Ullmann’s encyclopedia of industrial chemistry. VCH Publishers, New York

    Google Scholar 

  3. Dow KH, Bucholtz JD, Iwamoto RR, Fieler VK, Hilderley LJ (1997) Nursing care in radiation oncology. WB Saunders Co, Orlando

    Google Scholar 

  4. Andress E, Delaplane K, Schuler G (1998) Food irradiation, cooperative extension service publication, Athens. University of Georgia, GA

    Google Scholar 

  5. Lumetta GJ, Wagner MJ, Carlson CD (1996) Actinide, strontium, and cesium removal from hanford radioactive tank sludge. Solvent Extr Ion Exch 14:35–60

    Article  CAS  Google Scholar 

  6. Kotvitskyy AG, Maltseva TV, Belyakov VN (2005) Selective removal of Cs+ ions by means of electrodeionisation. Sep Purif Technol 41:329–334

    Article  CAS  Google Scholar 

  7. Wood DJ, Law JD (1997) Evaluation of the SREX Solvent Extraction Process for the Removal of 90Sr and Hazardous Metals from Acidic Nuclear Waste Solutions Containing High Concentrations of Interfering Alkali metal Ions. Sep Sci Technol 32:241–253

    Article  CAS  Google Scholar 

  8. Veshev SA, Alekseev SG, Dukhanin AS (1996) Migration of radionuclides in soil under a static electric field. Geokhimiya 34:908–911

    Google Scholar 

  9. Gerber GB, Thomas RG (1992) Guidebook for the treatment of accidental internal radionuclide contamination of workers. Nuclear Technology Publishing, Ashford

    Google Scholar 

  10. Asfari Z, Bressot C, Vicens J, Hill C, Dozol JF, Rouquette H, Eymard S, Lamare V, Tournois B (1995) Doubly crowned calixarenes in the 1, 3-alternate conformation as cesium-selective carriers in supported liquid membranes. Anal Chem 67:3133–3139

    Article  CAS  Google Scholar 

  11. Apak R, Atun G, Gucülu K, Tutem E (1995) Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. II. Usage of coal fly ash. J Nucl Sci Technol 32:1008–1017

    Article  CAS  Google Scholar 

  12. Llobet JM, Colomina MT, Domingo JL, Corbella J (1993) Evaluation of potential strontium chelators in an octanol-water system. Health Phys 65:541–545

    Article  CAS  Google Scholar 

  13. Ebner AD, Ritter JA, Navratil JD (2001) Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite-silica composite. Ind Eng Chem Res 40:1615–1623

    Article  CAS  Google Scholar 

  14. Abe M, Kataoka T, Suzuki T (1991) New developments in ion exchange. Elsevier, Kodansha, Tokyo

    Google Scholar 

  15. Faghihian H, Marageh MG, Kazemian H (1999) The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl Radiat Isot 50:655–660

    Article  CAS  Google Scholar 

  16. Mardan A, Ajaz R, Mehmood A, Raza SM, Ghaffar A (1999) Preparation of silica potassium cobalt hexacyanoferrate composite ion exchanger and its uptake behavior for cesium. Sep Purif Technol 16:147–158

    Article  CAS  Google Scholar 

  17. Maragheh MG, Husain SW, Khanchi AR (1999) Selective sorption of radioactive cesium and strontium on stannic molybdophosphate ion exchanger. Appl Radiat Isot 50:459–465

    Article  Google Scholar 

  18. Zhang HY, Wang RS, Lin CS, Zhang XY (2001) A new ecomaterial of zirconyl molybdopyrophosphate for the removal of Cs and Sr from HLLW. J Radioanal Nucl Chem 247:541–544

    Article  CAS  Google Scholar 

  19. Moller T, Clearfield A, Harjula R (2002) Preparation of hydrous mixed metal oxides of Sb, Nb, Si, Ti and W with a pyrochlore structure and exchange of radioactive cesium and strontium ions into the materials. Microporous and Mesoporous Mater 54:187–199

    Article  CAS  Google Scholar 

  20. Shabana EI, El-Dessouky MI (2002) Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. J Radioanal Nucl Chem 253:281–284

    Article  CAS  Google Scholar 

  21. Gupta AP, Varshney PK (2000) Studies on a new heteropolyacid based inorganic ion exchanger: zirconium (IV) selenomolybdate. Reac Funct Polym 43:33–41

    Article  CAS  Google Scholar 

  22. Yavari R, Ahmadi SJ, Huang YD, Bagher G (2008) Synthesis, ion exchange properties, and applications of amorphous cerium(III) tungstosilicate. Sep Sci Technol 43:3920–3925

    Article  CAS  Google Scholar 

  23. Yavari R, Khanchi AR, Maragheh MG, Waqif-Husain S (2006) Sorption of radionuclides on thorium tungstophosphate: a new inorganic ion-exchanger. J Radioanal Nucl Chem 267:685–690

    Article  CAS  Google Scholar 

  24. Yavari R, Ahmadi SJ, Huang YD, Khanchi AR, Bagheri G, He JM (2009) Synthesis, characterization and analytical application of a new inorganic cation exchanger: titanium(IV) molybdophosphate. Talanta 77:1179–1184

    Article  CAS  Google Scholar 

  25. Varshney KG, Agrawal S, Varshney K, Sharma U, Rani S (1984) Radiation stability of some thermally stable inorganic ion exchangers. J Radioanal Nucl Chem 82:299–308

    Article  CAS  Google Scholar 

  26. Winge RK, Fassel VA, Peterson VJ, Floyed MA (1985) Inductively coupled plasma atomic emission spectroscopy. Elsevier Science, Amsterdam

    Google Scholar 

  27. El-Gammal B, Shady SA (2006) Chromatographic separation of sodium, cobalt and europium on the particles of zirconium molybdate and zirconium silicate ion exchangers. Colloids Surf A 287:132–138

    Article  CAS  Google Scholar 

  28. Khanchi AR, Yavari R, Pourazarsa SK (2007) Preparation and evaluation of composite ion-exchanger for the removal of cesium and strontium radioisotopes. J Radioanal Nucl Chem 273:141–145

    Article  CAS  Google Scholar 

  29. Aly HF, EI-Naggar IM (1998) Synthesis of tetravalent metal antimonates: characteristics and use in treatment of radioactive waste solutions. J Radioanal Nucl Chem 228:151–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, R., Huang, Y.D., Ahmadi, S.J. et al. Uptake behavior of titanium molybdophosphate for cesium and strontium. J Radioanal Nucl Chem 286, 223–229 (2010). https://doi.org/10.1007/s10967-010-0642-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0642-1

Keywords

Navigation