Skip to main content
Log in

True coincidence summing corrections in point and extended sources

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The true coincidence summing (TCS) effect on the full energy peak (FEP) efficiency calibration of an HPGe detector has been studied as a function of sample-to-detector distance using multi-gamma sources. Analytical method has been used to calculate coincidence correction factors for 152Eu, 133Ba, 134Cs and 60Co for point and extended source geometry at close sample-to-detector distance. Peak and total efficiencies required for this method have been obtained by using MCNP code by using the optimized detector geometry. The correction factors have also been obtained experimentally. The analytical and the experimental correction factors have been found to match within 1–5%. The method has been applied to obtain the activity of the radionuclides (106Ru, 125Sb, 134Cs and 144Ce) present in a fission product sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gilmore G, Hemingway JD (1995) Practical gamma ray spectrometry. Wiley, Chichester. ISBN 0471 951 501

  2. Andreev DS, Erokhina KI, Zvonov VS, Lemberg IKh (1972) Instrum Exp Technol 15:1358 (English translation)

    Google Scholar 

  3. Andreev DS, Erokina KI, Zvonov VS, Lemberg IKh (1973) Izv Akad Nauk SSSR Ser Fiz 37:1609

    CAS  Google Scholar 

  4. Debertin K, Schotzig U (1979) Nucl Instrum Methods 158:471–477

    Article  CAS  Google Scholar 

  5. Mccallum GJ, Coote GE (1975) Nucl Instrum Methods 130:189–197

    Article  CAS  Google Scholar 

  6. Sinkko K, Aaltonen H (1985) Report STUK-B-VALO 40. Finish Centre for Radiation and Nuclear Safety, Surveillance Department, Helsinki

    Google Scholar 

  7. Schima FJ, Hoppes DD (1983) Int J Appl Radiat Isot 34:1109

    Article  CAS  Google Scholar 

  8. Dryak P, Kovar P (2009) J Radioanal Nucl Chem 279:385–394

    Article  CAS  Google Scholar 

  9. De Corte F, Freitas M (1992) J Radioanal Nucl Chem 160:253–267

    Article  Google Scholar 

  10. Montgomery DM, Montgomery GA (1995) J Radioanal Nucl Chem Artic 193:71–79

    Article  CAS  Google Scholar 

  11. Kafala SI (1995) J Radioanal Nucl Chem 191:105–114

    Article  CAS  Google Scholar 

  12. Sundgren O (1993) Sci Total Environ 130–131:167–175

    Article  Google Scholar 

  13. Korun M (2004) Appl Radiat Isot 60:207–211

    Article  CAS  Google Scholar 

  14. Haase G, Tait D, Wiechen A (1993) Nucl Instrum Methods Phys Res A 329:483–492

    Article  Google Scholar 

  15. Haase G, Tait D, Wiechen A (1993) Nucl Instrum Methods Phys Res A 336:206–214

    Article  CAS  Google Scholar 

  16. Wang Z, Kahn B, Valentine JD (2002) IEEE Trans Nucl Sci 49:1925–1931

    Article  CAS  Google Scholar 

  17. Dias MS, Tadeka MN, Koskinas MF (2002) Appl Radiat Isot 56:105

    Article  CAS  Google Scholar 

  18. García-Toraño E, Pozuelo M, Salvat F (2005) Nucl Instrum Methods Phys Res A 544:577–583

    Article  Google Scholar 

  19. Decombaz M, Gostely JJ, Laedermann JP (1992) Nucl Instrum Methods A 312:152

    Article  Google Scholar 

  20. Sima O, Arnold D (1995) International conference on low level measurement techniques. ICRM 1995, Seville, 2–6 Oct

  21. Agarwal C, Chaudhury S, Goswami A, Gathibandhe M (2011) J Radioanal Nucl Chem 287:701

    Article  CAS  Google Scholar 

  22. Firestone RB (1996) Table of isotopes, 8th edn. Wiley-Interscience Publishing, New York

    Google Scholar 

  23. Briesmeister JF (2000) MCNP—a general Monte Carlo N-particle transport code version 4C LA-13709-M. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  24. Be M-M, Chiste V, Dulien C, Browne E, Chechev V, Kuzmenko N, Helmer R, Nichols A, Schonfeld E, Derseh R (2006) Monographie BIPM-5, vol 1–4

  25. Arnold D, Sima O (2001) J Radioanal Nucl Chem 248:365–370

    Article  CAS  Google Scholar 

  26. Sima O, Arnold D (2000) Appl Radiat Isot 53(51):56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Goswami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, C., Chaudhury, S., Goswami, A. et al. True coincidence summing corrections in point and extended sources. J Radioanal Nucl Chem 289, 773–780 (2011). https://doi.org/10.1007/s10967-011-1126-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1126-7

Keywords

Navigation