Skip to main content

Advertisement

Log in

Interpenetrating networks of bacterial cellulose and poly (ethylene glycol) diacrylate as potential cephalexin carriers in wound therapy

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, hybrid hydrogels based on bacterial cellulose (BC) and poly (ethylene glycol) diacrylate (PEGDA) were synthesized by a radical polymerization reaction using a redox initiator system. The proposed interpenetrating networks (IPNs) were intended for developing a controlled release micro-vesicular system for wound therapy, through micro-colloidal architectures of hydrogels based on bacterial cellulose. Therefore, the hybrid hydrogels were first characterized to determine the influence of the BC concentration on the swelling degree and their mechanical stability. Further on, infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA/DTG), and scanning electron microscopy (SEM) were implemented to investigate their structure, composition, thermal stability, and morphology. The controlled release assay of cephalexin (CEX) was performed in buffer solution at pH 7.4 and 37 °C using CEX-loaded hydrogels and the release profiles were deciphered with the aid of UV–Visible spectroscopy. Cytotoxicity tests performed on simple and CEX-loaded samples indicated that the BC-PEGDA hydrogels containing the drug of interest were relatively non-toxic when exposed to murine fibroblasts, representing thus a potential candidate for materials used for wound treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roorda WE, Bodde HE, De Boer AG, Junginger HE (1986) Synthetic hydrogels as drug delivery systems. Pharm Weekbl 8:165–189. https://doi.org/10.1007/BF01959775

    Article  CAS  Google Scholar 

  2. Hajikarimi A, Sadeghi M (2020) Free radical synthesis of cross-linking gelatine base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver. J Polym Res 27:57. https://doi.org/10.1007/s10965-020-2020-1

    Article  CAS  Google Scholar 

  3. Wang D, Yang X, Liu Q, Yu L, Ding J (2018) Enzymatically cross-linked hydrogels based on a linear poly (ethylene glycol) analogue for controlled protein release and 3D cell culture. J Mater Chem B 6:6067–6079. https://doi.org/10.1039/C8TB01949E

    Article  CAS  PubMed  Google Scholar 

  4. Griffin DR, Kasko AM (2012) Photodegradable Macromers and Hydrogels for Live Cell Encapsulation and Release. J Am Chem Soc 134:13103–13107. https://doi.org/10.1021/ja305280w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165. https://doi.org/10.1089/ten.teb.2007.0332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sampath S, Choudhury NA, Shukla AK (2009) Hydrogel membrane electrolyte for electrochemical capacitors. J Chem Sci 121:727–734. https://doi.org/10.1007/s12039-009-0087-7

    Article  CAS  Google Scholar 

  7. Brinkman E, Van der Does L, Bantjes A (1991) Poly(vinyl alcohol)-heparin hydrogels as sensor catheter membranes. Biomat 12:63–70. https://doi.org/10.1016/0142-9612(91)90134-V

    Article  CAS  Google Scholar 

  8. Frost BA, Sutliff BP, Thayer P, Bortner MJ, Foster EJ (2019) Gradient poly(ethylene glycol) diacrylate and cellulose nanocrystals tissue engineering composite scaffolds via extrusion bioprinting. Front Bioeng Biotechnol 7:280. https://doi.org/10.3389/fbioe.2019.00280

    Article  PubMed  PubMed Central  Google Scholar 

  9. Won N, Bok SH, Park JS, Na YH (2018) Nanocomposite hydrogel adhered to concrete material for aquaculture of marine organisms. Macromol Res 26:717–723. https://doi.org/10.1007/s13233-018-6096-y

    Article  CAS  Google Scholar 

  10. Memic A, Alhadrami HA, Hussain MA, Aldhahri M, Nowaiser FA, Al-Hazmi F, Oklu R, Khademhosseini A (2016) Hydrogels 2.0: improved properties with nanomaterials composites for biomedical applications. Biomed Mater 11:014104. https://doi.org/10.1088/1748-6041/11/1/014104

    Article  CAS  Google Scholar 

  11. Montealleh A, Kehr NS (2017) Nanocomposite hydrogels and their applications in tissue engineering. Adv Healthc Mater 6:1600938. https://doi.org/10.1002/adhm.201600938

    Article  CAS  Google Scholar 

  12. Li L, Yan B, Yang J, Huang W, Chen L, Zeng H (2017) Injectable self-healing hydrogel with antimicrobial and antifouling properties. ACS Apple Matter Interfaces 9:9221–9225. https://doi.org/10.1021/acsami.6b16192

    Article  CAS  Google Scholar 

  13. Krsko P, Libera M (2005) Biointeractive hydrogels. Mater Today 8:36. https://doi.org/10.1016/S1369-7021(05)71223-2

    Article  CAS  Google Scholar 

  14. Numata Y, Kono H, Tsuji M, Tajima K (2017) Structural and mechanical characterisation of bacterial cellulose-polyethylene glycol diacrylate composite gels. Carbohydrate Polym 173:67–76. https://doi.org/10.1016/j.carbpol.2017.05.077

    Article  CAS  Google Scholar 

  15. Iguchi M, Yamanaka S, Budhiono A (2000) Review – bacterial cellulose – a masterpiece of nature’s arts. J Mat Sci 35:261–270. https://doi.org/10.1023/A:1004775229149

    Article  CAS  Google Scholar 

  16. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99. https://doi.org/10.1016/S0141-3910(97)00185-7

    Article  CAS  Google Scholar 

  17. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150. https://doi.org/10.4172/2155-9821.1000150

    Article  CAS  Google Scholar 

  18. Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohyd Polym 83:953–958. https://doi.org/10.1016/j.carbpol.2010.09.005

    Article  CAS  Google Scholar 

  19. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286. https://doi.org/10.1007/s00253-011-3432-y

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218. https://doi.org/10.1016/j.msec.2009.10.006

    Article  CAS  Google Scholar 

  21. Zmejkoski D, Spasojević D, Orlovska I, Kozyrovska N, Soković M, Glamočlija J, Dmitrović S, Matović B, Tasić N, Maksimović V, Sosnin M, Radotić K (2018) Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. Int J Biol Macromol 18(Part A):494–503. https://doi.org/10.1016/j.ijbiomac.2018.06.067

    Article  CAS  Google Scholar 

  22. de Sousa F, Moraes PR, Saska S, Barud H, de Lima LR, da Conceição Amaro Martins VD, de Guzzi Plepis AM, Ribeiro SJL, Minarelli Gaspar AM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 19(1):106–116. https://doi.org/10.1590/1980-5373-MR-2015-0249

    Article  Google Scholar 

  23. Zmejkoski D, Marković Z, Budimir MD, Zdravković NM, Trišić D, Bugárová N, Danko M, Kozyrovska NO, Špitalský Z, Kleinová A, Kuzman SB, Pavlović VB, Todorović Marković BM (2021) Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Mater Sci Eng C 122:111925. https://doi.org/10.1016/j.msec.2021.111925

    Article  CAS  Google Scholar 

  24. Asanarong O, Quan VM, Boonrungsiman S, Sukyai P (2021) Bioactive wound dressing using bacterial cellulose loaded with papain composite: Morphology, loading/release and antibacterial properties. Eur Polym J 143:110224. https://doi.org/10.1016/j.eurpolymj.2020.110224

    Article  CAS  Google Scholar 

  25. Swingler S, Gupta A, Gibson H, Kowalczuk M, Heaselgrave W, Radecka I (2021) Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers 13:412. https://doi.org/10.3390/polym13030412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kundu D, Banerjee T (2020) Development of microcrystalline cellulose-based hydrogels for the in vitro delivery of Cephalexin. Heliyon 6:e03027. https://doi.org/10.1016/j.heliyon.2019.e03027

    Article  PubMed  Google Scholar 

  27. Barkhordari S, Yadollahi M (2016) Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for cephalexin oral delivery. Appl Clay Sci 121:77–85. https://doi.org/10.1016/j.clay.2015.12.026

    Article  CAS  Google Scholar 

  28. Legnoverde MS, Simonetti S, Basaldella EI (2014) Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: theoretical and experimental study. Appl Surf Sci 300:37–42. https://doi.org/10.1016/j.apsusc.2014.01.198

    Article  CAS  Google Scholar 

  29. Tomic SLJ, Babic MM, Antic KM (2014) pH-sensitive hydrogels based on (meth)acrylates and itaconic acid. Macromol Res 22:1203–1213. https://doi.org/10.1007/s13233-014-2172-0

    Article  CAS  Google Scholar 

  30. Jilsha G, Viswanad V (2015) Nanosponge loaded hydrogel of cephalexin for topical delivery. IJPSR 6(7):2781–2789. https://doi.org/10.13040/IJPSR.0975-8232.6(7).2781-89

    Article  CAS  Google Scholar 

  31. Hajikarimi A, Sadeghi M (2020) Free radical synthesis of cross-linking gelatin base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver. J Polym Res 27:57. https://doi.org/10.1007/s10965-020-2020-1

    Article  CAS  Google Scholar 

  32. Zaharia A, Radu AL, Iancu S, Florea AM, Sandu T, Minca I, Fruth-Oprisan V, Teodorescu M, Sarbu A, Iordache TV (2018) Bacterial cellulose-poly(acrylic acid-co-N, N’-methylene-bis-acrylamide) interpenetrated networks for the controlled release of fertilizers. RSC Adv 8:17635–17644. https://doi.org/10.1039/C8RA01733F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dhand AP, Galarraga JH, Burdick JA (2021) Enhancing biopolymer hydrogel functionality through interpenetrating networks. Trends Biotechnol 39(5):519–538. https://doi.org/10.1016/j.tibtech.2020.08.007

    Article  CAS  PubMed  Google Scholar 

  34. Mankotia P, Sharma K, Sharma V, Kumar V (2020) Interpenetrating polymer networks in sustained drug-releasing. Adv Biopolym Syst Drug Deliv. https://doi.org/10.1007/978-3-030-46923-8_9

    Article  Google Scholar 

  35. Numata Y, Kono H, Tsuji M, Tajima K (2017) Structural and mechanical characterization of bacterial cellulose–polyethylene glycol diacrylate composite gels. Carbohydr Polym 173:67–76. https://doi.org/10.1016/j.carbpol.2017.05.077

    Article  CAS  PubMed  Google Scholar 

  36. Dobre LM, Stoica-Guzun A, Stroescu M, Jipa IM, Dobre T, Ferdes M, Ciumpiliac S (2012) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151. https://doi.org/10.2478/s11696-011-0086-2

    Article  CAS  Google Scholar 

  37. Teodorescu M, Lungu A, Stanescu PO, Neamtu C (2009) Preparation and properties of novel slow-release NPK agrochemical formulations based on poly(acrylic acid) hydrogels and liquid fertilizers. Ind Eng Chem Res 48(14):6527–6534. https://doi.org/10.1021/ie900254b

    Article  CAS  Google Scholar 

  38. Li H, Yang J, Hu X, Liang J, Fan Y, Zhang X (2011) Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mater Res Part A 98A:31–39. https://doi.org/10.1002/jbm.a.33045

    Article  CAS  Google Scholar 

  39. Cursaru B, Radu A-L, Perrin F-X, Sarbu A, Teodorescu M, Gavrila A-M, Damian C-M, Sandu T, Iordache T-V, Zaharia A (2019) Poly(ethylene glycol) composite hydrogels with natural zeolite as filler for controlled delivery applications. Macromol Res 28(3):211–220. https://doi.org/10.1007/s13233-020-8029-9

    Article  CAS  Google Scholar 

  40. Tang N, Zheng Y, Jiang X, Zhou C, Jin K, Wu W, Haick H (2021) Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines (Basel) 12(4):430. https://doi.org/10.3390/mi12040430

    Article  Google Scholar 

  41. Bialik-Was K, Pluta K, Malina D, Majka TM (2019) Alginate/PVA-based hydrogel matrices with Echinacea purpurea extract as a new approach to dermal wound healing. Int J Polym Mater. https://doi.org/10.1080/00914037.2019.1706510

    Article  Google Scholar 

  42. Tomic SLJ, Micic MM, Filipovic JM, Suljiovrujic EH (2010) Synthesis, characterization and controlled release of cephalexin drug from smart poly(2-hydroxyethyl methacrylate/poly(alkylene glycol)(meth)acrylates hydrogels. Chem Eng J 160:801–809. https://doi.org/10.1016/j.cej.2010.03.089

    Article  CAS  Google Scholar 

  43. Radu I-C, Hudita A, Zaharia C, Stanescu PO, Vasile E, Iovu H, Stan M, Ginghina O, Galateanu B, Costache M, Langguth P, Tsatsakis A, Velonia K, Negrei C (2017) Poly(HydroxyButyrate-co-HydroxyValerate) (PHBHV) nanocarriers for silymarin release as adjuvant therapy in colo-rectal cancer. Front Pharmacol 8:508. https://doi.org/10.3389/fphar.2017.00508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S (2010) DDSolver: an add-in program for modelling and comparison of drug dissolution profiles. AAPS J 12(3):263–271. https://doi.org/10.1208/s12248-010-9185-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhuyan M, Okabe H, Hidaka Y, Dafader NC, Rahman N, Hara K (2018) Synthesis of pectin-N, N-dimethyl acrylamide hydrogel by gamma radiation and application in drug delivery (in vitro). J Macromol Sci Part A 55(4):369–376. https://doi.org/10.1080/10601325.2018.1442177

    Article  CAS  Google Scholar 

  46. ISO 10993-12:2021 Biological evaluation of medical devices – Part 12: Sample preparation and reference materials, 2021. Edition 5:1–21

  47. ISO 10993-5:2009 Biological evaluation of medical devices – Part 5: Test for in vitro cytotoxicity, 2009. Edition 3:1–34

  48. Drabczyk A, Kudlacik-Kramarczyk S, Glab M, Kedzierska M, Jaromin A, Mierzwinski D, Tyliszczak B (2020) Physicochemical investigations of chitosan-based hydrogels containing Aloe Vera designed for biomedical use. Materials 13(14):3073. https://doi.org/10.3390/ma13143073

    Article  CAS  PubMed Central  Google Scholar 

  49. Ouasti S, Donno R, Cellesi F, Sherratt MJ, Terenghi G, Tirelli N (2011) Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/ PEG hydrogels. Biomaterials 32(27):6456–6470. https://doi.org/10.1016/j.biomaterials.2011.05.044

    Article  CAS  PubMed  Google Scholar 

  50. Ullah MW, Islam MU, Khan S, Kim Y (2016) In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Adv 6:22424–22435. https://doi.org/10.1039/C5RA26704H

    Article  CAS  Google Scholar 

  51. Agnihotri SA, Jawalkar SS, Aminabhavi TM (2006) Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size, and drug release. Eur J Pharm Biopharm 63:249–261. https://doi.org/10.1016/j.ejpb.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  52. Imani M, Sharifi S, Mirzadeh H, Ziaee F (2007) Monitoring of polyethylene glycol-diacrylate-based hydrogel formation by real time NMR spectroscopy. Iranian Polym J 16:13–20

    CAS  Google Scholar 

  53. Fulias A, Vlase T, Vlase G, Doca N (2010) Thermal behaviour of cephalexin in different mixtures. J Therm Anal Calorim 99:987–992. https://doi.org/10.1007/s10973-010-0708-x

    Article  CAS  Google Scholar 

  54. Panaitescu DM, Frone AN, Chiulan I, Casarica A, Nicolae CA, Ghiurea M, Trusca R, Damian CM (2016) Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Mater Des 110:790–801. https://doi.org/10.1016/j.matdes.2016.08.052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the Ministry of Research, Innovation and Digitization  through the Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI)[Project no. 646PED/2022 DUACTIVMER and by EU and UEFISCDI in the frame of collaborative international project 157/2020 BIOSHELL, financed under the ERA- NET CofundBlueBio2019 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita-Laura Chiriac or Andrei Sarbu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2311 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neblea, I.E., Gavrila, AM., Iordache, T. et al. Interpenetrating networks of bacterial cellulose and poly (ethylene glycol) diacrylate as potential cephalexin carriers in wound therapy. J Polym Res 29, 406 (2022). https://doi.org/10.1007/s10965-022-03250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03250-9

Keywords

Navigation