Skip to main content
Log in

Influence of TiO2 nanoparticles loading on permeability and antifouling properties of nanocomposite polymeric membranes: experimental and statistical analysis

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Influence of the dope solution concentration on final membrane properties, regarding TiO2 role, was investigated. For this purpose, blended flat sheet poly(vinylidene fluoride) (PVDF)-based membranes with different proportions of poly(vinyl pyrrolidone) (PVP)/TiO2 ratios were prepared via phase inversion process. The final application of the membranes was evaluated, especially in contact with vital microbial mixed liquor, in membrane bioreactors due to antibacterial properties of TiO2 and environmentally concern of nanoparticles application. Response surface methodology (RSM) was used as a precise and multivariate technique to estimate and navigate the system performance at any experimental point within the investigation domain. Filtration properties, flux recovery ratio and (Protein flux / pure water flux: Jp/Jw) ratio of the membranes were investigated statistically to propose the formulations for the optimal performance. The correlation showed good agreement with the measured pure water flux and flux recovery ratio values of the fabricated membranes, with R2 values higher than 90%. The findings are significant since demonstrating that the loaded nano TiO2 particles around 0.5 wt% improve pure water flux, however, based on the Pareto analysis, experimental values and environmental safety concern, nanoparticles loading can be neglected in comparison with the other factors investigated in this study.

The research sequences: Step 1: preliminary tests and Experimental Design, Step 2: answers analysis, Step 3: membrane design using main factors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Judd S (2006) The MBR Book: principles and applications of membrane bioreactors in water and wastewater treatment 2:2–19

  2. Bae T-H, Tak T-M (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249:1–8. https://doi.org/10.1016/j.memsci.2004.09.008

    Article  CAS  Google Scholar 

  3. Drews A, Kraume M (2005) Process improvement by application of membrane bioreactors. Chemical Engineering Research and Desig 83:276–284. https://doi.org/10.1205/cherd.04259

    Article  CAS  Google Scholar 

  4. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95. https://doi.org/10.1016/j.desal.2013.06.016

    Article  CAS  Google Scholar 

  5. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  6. Munari S, Bottino A, Capannelli G (1983) Casting and performance of PVDF based membranes. J Membr Sci 16:181–193

    Article  CAS  Google Scholar 

  7. Hou D, Dai G, Wang J, Fan H, Zhang L, Luan Z (2012) Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation. Sep Purif Technol 101:1–10. https://doi.org/10.1016/j.seppur.2012.08.031

    Article  CAS  Google Scholar 

  8. Ji J, Liu F, Hashim NA, Abed MRM, Li K (2015) Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. Reactive & Functional Polymers 86:134–153. https://doi.org/10.1016/j.reactfunctpolym.2014.09.023

    Article  CAS  Google Scholar 

  9. Pezeshk N, Ranab D, Narbaitz RM, Matsuura T (2012) Novel modified PVDF ultrafiltration flat-sheet membranes. J Membr Sci 389:280–286. https://doi.org/10.1016/j.memsci.2011.10.039

    Article  CAS  Google Scholar 

  10. Bottino A, Camera-Roda G, Capannelli G, Munari S (1990) The formation of microprous polyvinylidene Difluride membranes by phase inversion. J Membr Sci 57:(Membrane formation):1–(Membrane formation)20

    Article  Google Scholar 

  11. Ahmad AL, Ideris N, Ooi BS, Low SC, Ismail A (2012) Synthesis of Polyvinylidene fluoride (PVDF) membranes for protein binding: effect of casting thickness. J Appl Polym Sci:1–8

  12. Kang G-D, Cao Y-M (2014) Application and modification of poly(vinylidene fluoride) (PVDF)membranes – a review. J Membr Sci 463:145–165. https://doi.org/10.1016/j.memsci.2014.03.055

    Article  CAS  Google Scholar 

  13. Yuliwati E, Ismail AF (2011) Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 273:226–234. https://doi.org/10.1016/j.desal.2010.11.023

    Article  CAS  Google Scholar 

  14. Marbelia L, Bilad MR, Piassecka A, Jishna PS, Naik PV, Vankelecom IFJ (2016) Study of PVDF asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR): influence of phase inversion parameters and filtration performance. Sep Purif Technol 162:6–13. https://doi.org/10.1016/j.seppur.2016.02.008

    Article  CAS  Google Scholar 

  15. Sun AC, Kosar W, Zhang Y, Feng X (2013) A study of thermodynamics and kinetics pertinent to formation of PVDF membranes by phase inversion. Desalination 309(1):156–164. https://doi.org/10.1016/j.desal.2012.10.005

    Article  CAS  Google Scholar 

  16. Wang Q, Wang X, Wang Z, Huang J, Wang Y (2013) PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J Membr Sci 442:57–64. https://doi.org/10.1016/j.memsci.2013.04.026

    Article  CAS  Google Scholar 

  17. Wang Q, Wang Z, Zhang J, Wang J, Wu Z (2014) Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalance monitoring. Royal society of chemistry 4:43590–43598. https://doi.org/10.1039/c4ra07274j

    Article  CAS  Google Scholar 

  18. Ma J, Zhao J, Ren Z, Li L (2012) Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes. Front Chem Sci Eng 6(3):301–310. https://doi.org/10.1007/s11705-012-1204-6

    Article  CAS  Google Scholar 

  19. Anvari A, Yancheshme AA, Hemmati M, Rekaabdar F, Tavakolmoghadam M, Safekordi A (2017) PVDF/PAN blend membrane: preparation, characterization and fouling analysis. J Polym Environ 25(4):1348–1358. https://doi.org/10.1007/s10924-016-0889-x

    Article  CAS  Google Scholar 

  20. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2015) Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly(vinylphosphonic acid) with PVDF by means of poly(glycidyl methacrylate) grafts. J Polym Res 154:154):1–154)17. https://doi.org/10.1007/s10965-015-0796-1

    Article  CAS  Google Scholar 

  21. Bahader A, Haoguan G, Yunsheng D, HaoGoa F, Ping W, Shaojun W (2016) Preparation and characterization of poly(vinylidene fluoride) nanocomposites containing amphiphilic ionic liquid modified multiwalled carbon nanotubes. J Polym Res 23(184):1–9. https://doi.org/10.1007/s10965-016-1078-2

    Article  CAS  Google Scholar 

  22. Zhao Y, Zhao H, Chen L, Feng X, Zhang Q, Wang J, Zhang R (2013) Thermo-responsive modification and properties study of PVDF flat membrane. J Polym Res 20:58):1–58):8. https://doi.org/10.1007/s10965-012-0058-4

    Article  CAS  Google Scholar 

  23. Enayatzadeh M, Mohammadi T (2018) Morphology and performance of poly(vinylidene fluoride) flat sheet membranes: thermodynamic and kinetic aspects. J Appl Polym Sci 135:46419. https://doi.org/10.1002/app.46419

    Article  CAS  Google Scholar 

  24. Cui Z, Drioli E, Lee YM (2014) Recent Progress in fluoropolymers for membranes. Prog Polym Sci 39:164–198. https://doi.org/10.1016/j.progpolymsci.2013.07.008

    Article  CAS  Google Scholar 

  25. Lesage MTMG, Mohammadi T, Mericq J-P, Mendret J, Heran M, Faur C, Brosillon S, Hemmati M, Naeimpoor F (2015) Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration. J Appl Polym Sci 132:1–13. https://doi.org/10.1002/app.41731

    Article  CAS  Google Scholar 

  26. Safarpour M, Vatanpour V, Khataee A (2016) Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393:65–78. https://doi.org/10.1016/j.desal.2015.07.003

    Article  CAS  Google Scholar 

  27. Li J-F, Xu Z-L, Yang H, Yu L-Y, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732. https://doi.org/10.1016/j.apsusc.2008.07.139

    Article  CAS  Google Scholar 

  28. Dong C, Hea G, Li H, Zhao R, Han Y, Deng Y (2012) Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding mg(OH)2 nanoparticles. J Membr Sci 387– 388:40–47

    Article  Google Scholar 

  29. Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010. https://doi.org/10.1016/j.apsusc.2006.03.090

    Article  CAS  Google Scholar 

  30. Shi F, Ma Y, Ma J, Wang P, Sun W (2013) Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J Membr Sci 427:259–269

    Article  CAS  Google Scholar 

  31. Bian X, Shi L, Yang X, Lu X (2011) Effect of Nano-TiO2 particles on the performance of PVDF, PVDF-g-(Maleic anhydride), and PVDF-g-poly(acryl amide) membranes. Ind Eng Chem 50:12113–12123. https://doi.org/10.1021/ie200232u

    Article  CAS  Google Scholar 

  32. Yan L, Li YS, Xiang CB, Xianda S (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J Membr Sci 276:162–167. https://doi.org/10.1016/j.memsci.2005.09.044

    Article  CAS  Google Scholar 

  33. Yan L, Hong S, Li ML, Li YS (2009) Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oilywastewater treatment and its antifouling research. Sep Purif Technol 66:347–352

    Article  CAS  Google Scholar 

  34. Huang J, Zhang K, Wan K, Xie Z, Ladewig B, Wang H (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423–424:362–370. https://doi.org/10.1016/j.memsci.2012.08.029

    Article  CAS  Google Scholar 

  35. Javadi M, Jafarzadeh Y, Yegani R, Kazemi S (2018) PVDF membranes embedded with PVP functionalized nanodiamond for pharmaceutical wastewater treatment. Chem Eng Res Des 140:241–250. doi:/doi.org/https://doi.org/10.1016/j.cherd.2018.10.029

  36. Yuexiang Mo XY, Liu W, Zhang M, Ruan W (2015) Synthesis and characterization of nano-modified permeability membrane. Polym Adv Technol 26:1346–1350. https://doi.org/10.1002/pat.3649

    Article  CAS  Google Scholar 

  37. Z-l XU, L-y YU, L-f HAN (2009) Polymer-nanoinorganic particles composite membranes: a brief overview. Front Chem Eng China 3(3):318–329. https://doi.org/10.1007/s11705-009-0199-0

    Article  CAS  Google Scholar 

  38. Selakjani PP, Peyravi M, Jahanshahi M, Hoseinpour H, Rad AS, Khalili S (2018) Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers. Front Chem Sci Eng 12(1):174–183. https://doi.org/10.1007/s11705-017-1670-y

    Article  CAS  Google Scholar 

  39. Ong CS, Lau WJ, Goh PS, Ng BC, Matsuura T, Ismail AF (2014) Effect of PVP molecular weights on the properties of PVDF-TiO2 composite membrane for oily wastewater treatment process. Sep Sci Technol 49:2303–2314. https://doi.org/10.1080/01496395.2014.928323

    Article  CAS  Google Scholar 

  40. Fontananova E, Jansen JC, Cristiano A, Curcio E, Drioli E (2006) Effect of additives in the casting solution on the formation of PVDF membranes. Desalination 192:190–197. https://doi.org/10.1016/j.desal.2005.09.021

    Article  CAS  Google Scholar 

  41. Suresh K, Pugazhenthi G, Uppaluri R (2016) Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane. Front Chem Sci Eng 11(2):266–279. https://doi.org/10.1007/s11705-017-1608-4

    Article  CAS  Google Scholar 

  42. J.-P. M, J. M, S. B, C. F (2015) High performance PVDF-TiO2 membranes for water treatment. Chem Eng Sci 123:283–291. https://doi.org/10.1016/j.ces.2014.10.047

    Article  CAS  Google Scholar 

  43. X. B, L. S, X. Y, X. L (2011) Effect of Nano-TiO2 particles on the performance of PVDF, PVDF-g-(maleic anhydride), and PVDF-g-poly(acryl amide) membranes. Ind Eng Chem Res 50:12113–12123. https://doi.org/10.1021/ie200232u

    Article  CAS  Google Scholar 

  44. Fengmei Shi YM, Ma J, Wang P, Sun W (2012) Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J Membr Sci 389:522–531

    Article  Google Scholar 

  45. Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement. J Membr Sci 345:13–20. https://doi.org/10.1016/j.memsci.2009.08.003

    Article  CAS  Google Scholar 

  46. Reijnders L (2009) The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab 94:873–876. https://doi.org/10.1016/j.polymdegradstab.2009.02.005

    Article  CAS  Google Scholar 

  47. M. S, A. K, V. V (2014) (2015) Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2014.11.010

    Article  CAS  Google Scholar 

  48. L. Z, Q. ZW, Y. DC, S. X (2019) Potential effects of suspended TiO2 nanoparticles on activated sludge floc properties in membrane bioreactors. Chemosphere 223:148–156. https://doi.org/10.1016/j.chemosphere.2019.02.042

    Article  CAS  Google Scholar 

  49. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2(4):455–475. https://doi.org/10.1080/00401706.1960.10489912

    Article  Google Scholar 

  50. Morshedi A, Akbarian M (2014) Application of response surface methodology: Design of experiments and optimization: a mini review. Indian Journal of Fundamental and Applied Life Sciences 4:2434–2439

    Google Scholar 

  51. Wang Q, Wang Z, Wu Z (2012) Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment. Desalination 297:79–86

    Article  CAS  Google Scholar 

  52. Alcaina-Miranda MI, Barredo-Damas S, Bes-Pia` A, Iborra-Clar MI, Iborra-Clar A, Mendoza-Roca JA (2009) Nanofiltration as a final step towards textile wastewater reclamation. Desalination 240:290

    Article  CAS  Google Scholar 

  53. Ay F, Catalkaya EC, Kargi F (2009) A statistical experiment design approach for advanced oxidation of direct red azo-dye by photo-Fenton treatment. J Hazard Mater 162:230–236

    Article  CAS  Google Scholar 

  54. Vatanpour V, Karami A, Sheydaei M (2017) Central composite design optimization of rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor. Chem Eng Process Process Intensif 116:68–75. https://doi.org/10.1016/j.cep.2017.02.015

    Article  CAS  Google Scholar 

  55. Balachandran M, Stanly LP, Mulaleekrishnan R, Bhagawan SS (2010) Modeling NBR- layered silicate nanocomposites: a DoE approach. J Appl Polym Sci 118:3300–3310. https://doi.org/10.1002/app.32147

    Article  CAS  Google Scholar 

  56. Sotto A, Boromand A, Balta S, Kim J, Bruggen BV (2011) Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J Mater Chem 21:10311. https://doi.org/10.1039/c1jm11040c

    Article  CAS  Google Scholar 

  57. JsMa A, Sotto A, Rosario GD, Martínez A, Molina S, Teli SB, Abajo JD (2013) Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci 428:131–141

    Article  Google Scholar 

  58. Sajjad M, Abdollah K (2018) Influence of additives on the morphology of PVDF membranes based on phase diagram: thermodynamic and experimental study. J Appl Polym Sci 46225:46221–46210. https://doi.org/10.1002/APP.46225

    Article  Google Scholar 

  59. Mohammad P, Maryam B, Toraj M, Omid B (2017) Fabrication optimization of polyethersulfone (PES)/ polyvinylpyrrolidone (PVP) nanofiltration membranes using Box–Behnken response surface method. RSC Adv 7:24995–25008. https://doi.org/10.1039/c7ra03566g

    Article  CAS  Google Scholar 

  60. Sivasankaran A, Rajesh P, Young-Ho A (2018) Fabrication and characterization of anti-fouling and non-toxic polyvinylidene fluoride -Sulphonated carbon nanotube ultrafiltration membranes for membrane bioreactors applications. Chem. Eng. Res. 142:176–188. https://doi.org/10.1016/j.cherd.2018.12.008

    Article  CAS  Google Scholar 

  61. Nayak RK, Mahato KK, Routara BC, Ray BC (2016) Evaluation of mechanical properties of Al2O3 and TiO2 nano filled enhanced glass fiber reinforced polymer composites. J Appl Polym Sci 133:1–13. https://doi.org/10.1002/APP.44274

    Article  Google Scholar 

  62. Myers RH, Anderson-Cook DCMCM (2009 by John Wiley & Sons, Inc) Response surface Methodology

  63. Chellappa M, anjaneyulu U, Manivasagam g VU (2015) Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method. Int J Nanomedicine 10 Suppl 1: Challenges in biomaterials research)

Download references

Acknowledgements

The authors would like to thank Dr. Samaneh Khanlari for her valuable comments and corrections and Mrs. Parastoo Zeinolabedini for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toraj Mohammadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Fig. 7
figure 7

Research procedure

Appendix 2

Fig. 8
figure 8

Experimental Set up for filtration measurements

Appendix 3

Surface and cross section micrograph of membranes

Fig. 9
figure 9

Surface micrograph of membranes (SEM Magnification: 25kx)

Fig. 10
figure 10

Cross section micrograph of membranes. a (STD001-STD003: SEM Magnification: 2000x, STD004: SEM magnification: 500x), b (STD005-STD007-STD010: SEM Magnification: 2000x, STD006-STD008-STD009: SEM magnification: 500x, c (STD011: SEM Magnification: 2000x, STD012-STD013: SEM magnification: 500x)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enayatzadeh, M., Mohammadi, T. & Fallah, N. Influence of TiO2 nanoparticles loading on permeability and antifouling properties of nanocomposite polymeric membranes: experimental and statistical analysis. J Polym Res 26, 240 (2019). https://doi.org/10.1007/s10965-019-1892-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1892-4

Keywords

Navigation