Skip to main content

Advertisement

Log in

Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Wounds exhibit varied behaviour and types and each type has its own differential healing requirements. This realization has encouraged the development of various wound dressings, each with specific characteristics. In the present study, composite hydrogels composed of PVA/Pullulan/Poly-L-Lysine/Gelatin (P/Pu/L/G) were fabricated using the freeze-thawing method with the aim of achieving enhanced wound healing. The hydrogels were evaluated for their physicochemical and in vitro biological properties. The morphological evaluation using SEM revealed the porous three-dimensional structure exhibited by the P/Pu/L/G hydrogels. The wettability and chemical composition of the hydrogels was elucidated by contact angle and ATR-FTIR analysis respectively, where the contact angle measurements showed an increase in the hydrophilicity of P/Pu hydrogel upon the incorporation of Poly-L-lysine and Gelatin. The results of in vitro hemolysis assay showed better blood compatibility of the fabricated hydrogels while the protein adsorption study revealed a 2.3-fold increase in the protein adsorption on the P/Pu/L/G hydrogels as compared to PVA hydrogels. The composite P/Pu/L/G scaffolds exhibited a 2-fold increase in the cell viability on day 7, when compared to the control; while the results of the scratch assay where complementary to the cell viability assay, which affirmed improved cell migration and proliferation in the presence of P/Pu/L/G hydrogels. The overall results of physicochemical characterization and biological evaluation advocates the potential of the composite hydrogels of P/Pu/L/G for biomedical applications such as wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    Article  CAS  Google Scholar 

  2. Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  3. Fahmy A, Kamoun EA, Eisawy RE, El-Fakharany EM, Taha TH, El-Damhougya BK, Abdelh F (2015) Poly(vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: synthesis and in vitro bio-evaluations. J Braz Chem Soc 26:1466–1474

    CAS  Google Scholar 

  4. Kaolaor A, Phunpee S, Ruktanonchai UR, Suwantong O (2019) Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. J Polym Res 26:43–54

    Article  Google Scholar 

  5. Fan L, Yang H, Yang J, Peng M, Hu J (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel forwound dressings. Carbohydr Polym 146:427–434

    Article  CAS  Google Scholar 

  6. Jaiswal M, Gupta A, Agrawal AK, Jassal M, Dinda AK, Koul V (2013) Bi-layer composite dressing of gelatin Nanofibrous mat and poly vinyl alcohol hydrogel for drug delivery and wound healing application: in-vitro and in-vivo studies. J Biomed Nanotechnol 9:1495–1508

    Article  CAS  Google Scholar 

  7. Chen DH, Leu JC, Huang TC (1994) Transport and hydrolysis of urea in a reactor-separator combining an anion-exchange membrane immobilized urease. J Chem Tech Biotechnol 61:351–357

    Article  CAS  Google Scholar 

  8. Hyon SH, Cha W, Ikada Y, Kita M, Ogura Y, Honda Y (1994) Poly(vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 5:397–406

    Article  CAS  Google Scholar 

  9. Smith TJ, Kennedy JE, Higginbotham CL (2009) The rheological and thermal characteristics of freeze-thawed hydrogels containing hydrogen peroxide for potential wound healing applications. J Mech Behav Biomed Mater 2:264–271

    Article  Google Scholar 

  10. Zhou G, Ruhan A, Ge H, Wang L, Liu M, Wang B, Su H, Yan M, Xi Y, Fan Y (2014) Research on a novel poly (vinyl alcohol)/lysine/ vanillin wound dressing: biocompatibility, bioactivity and antimicrobial activity. Burns 40:1668–1678

    Article  Google Scholar 

  11. Hassan CM, Peppas NA (1999) Structure and application of poly(vinyl alcohol) hydrogels produced by conventional crosslinkingor by freeze thawing methods. Adv Polym Sci 153:38–62

    Google Scholar 

  12. Yoshiia F, Zhanshanb Y, Isobec K, Shinozakic K, Makuuchi K (1999) Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat Phys Chem 55:133–138

    Article  Google Scholar 

  13. Kamoun EA, Chen X, Mohy Eldin MS, Kenawy ES (2014) Crosslinked poly(vinyl alcohol) hydrogel for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8:1–14. https://doi.org/10.1016/j.arabjc.2014.07.005

    Article  CAS  Google Scholar 

  14. Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/ starch /chitosan hydrogel membranes with nano zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28:2220–2241. https://doi.org/10.1080/09205063.2017.1390383

    Article  CAS  PubMed  Google Scholar 

  15. Lian Z, Ye L (2015) Synthesis and properties of carboxylated poly (vinyl alcohol) hydrogels for wound dressings. J Polym Res 22:72–83

    Article  Google Scholar 

  16. Miranda LFD, Cunha KLG, Barbosa ITF, Masson TJ, Munhoz AH (2018) Obtaining hydrogels based on PVP/PVAL/Chitosa containing Pseudoboehmite nanoparticles for application in drugs. Intech Open, Hydrogels. https://doi.org/10.5772/intechopen.72007

  17. Wong VW, Rustad KC, Galvez MG, Neofytou E, Glotzbach JP, Januszyk M, Major MR, Sorkin M, Longaker MT, Rajadas J, Gurtner GC (2011) Engineered pullulan–collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng A 17:5–6

    Article  Google Scholar 

  18. Annabi N, Mithieux SM, Weiss AS, Dehghani F (2009) The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials 30:1–7

    Article  CAS  Google Scholar 

  19. Shafagh N, Sabzi M, Afshari MJ (2018) Development of pH-sensitive and antibacterial gelatin/citric acid/ag nanocomposite hydrogels with potential for biomedical applications. J Polym Res 25:259–266

    Article  Google Scholar 

  20. Nicholas MN, Jeschke MG, Amini-Nik S (2016) Cellularized bilayer pullulan-gelatin hydrogel for skin regeneration. Tissue Eng A 22:9–10

    Article  Google Scholar 

  21. Lia D, Yea Y, Li D, Li X, Mu C (2016) Biological properties of dialdehyde carboxymethyl cellulosecrosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydr Polym 137:508–514

    Article  Google Scholar 

  22. Kołodziejska I, Kaczorowski K, Piotrowska B, Sadowska M (2004) Modification of the properties of gelatin from skins of Baltic cod (Gadus morhua) with transglutaminase. Food Chem 86:203–209

    Article  Google Scholar 

  23. Wang X, Zhang D, Wang J, Tang R, Wei B, Jiang Q (2016) Succinyl pullulan-crosslinked Carboxymethyl chitosan sponges for potential wound dressing. Int J Polym Mater Polym Biomater 66:61–70. https://doi.org/10.1080/00914037.2016.1182912

    Article  CAS  Google Scholar 

  24. Autissier A, Letourneur D, Visage CL (2006) Pullulan-based hydrogel for smooth muscle cell culture. Wiley InterScience 82A:336–342. https://doi.org/10.1002/jbm.a.30998

    Article  CAS  Google Scholar 

  25. Rekha MR, Sharma CP (2007) Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 20:116–121

    Google Scholar 

  26. Chaouat M, Visagea CL, Autissiera A, Chaubet F, Letourneur D (2006) The evaluation of a small-diameter polysaccharide-based arterial graft in rats. Biomaterials 27:5546–5553

    Article  CAS  Google Scholar 

  27. Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exo-polysaccharide, pullulan. Carbohydr Res 339:447–460

    Article  CAS  Google Scholar 

  28. Shitole AA, Raut PW, Sharma N, Giram P, Khandwekar AP, Garnaik B (2019) Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. J Mater Sci Mater Med 30:51–68

    Article  Google Scholar 

  29. Giram PS, Shitole A, Nande SS, Sharma N, Garnaik B (2018) Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous Mats. Mater Sci Eng C 92:526–539

    Article  CAS  Google Scholar 

  30. Shitole AA, Giram PS, Raut PW, Rade PP, Khandwekar AP, Sharma N, Garnaik B (2019) Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, hemocompatible nanofibrous scaffolds. J Biomater Appl 18:1–21

    Google Scholar 

  31. Raut PW, Shitole AA, Khandwekar A, Sharma N (2019) Engineering biomimetic polyurethane using polyethylene glycol and gelatin for blood-contacting applications. J Mater Sci 54:10457–10472

    Article  CAS  Google Scholar 

  32. Shinde DB, Koratkar SS, Sharma NE, Shitole AA (2016) Antioxidant activity and antiproliferative action of methanolic extract of liquorice (Glycyrrhiza glabra) in HepG2 cell line. Int J Pharm Pharm Sci 8:293–298

    Article  CAS  Google Scholar 

  33. Qian Y, Qi M, Zheng L, King MW, Lv L, Ye F (2016) Incorporation of Rutin in electrospun pullulan/PVA nanofibers for novel UV-resistant properties. Materials 9:504

    Article  Google Scholar 

  34. Chandy T, Sharma CP (1990) Chitosan - as a biomaterial. Biohat., art. Cells. Art Org 18:1–24

    CAS  Google Scholar 

  35. Pan JF, Liu NH, Sun H, Xu F (2014) Preparation and characterization of electrospun PLCL/ Poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering. PLoS One 9:e112885

    Article  Google Scholar 

  36. Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A (2016) Anti-bacterial and anti-inflammatory pH-responsive tannic acidcarboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces 8:28511–28521. https://doi.org/10.1021/acsami.6b10491

    Article  CAS  PubMed  Google Scholar 

  37. Ninan N, Muthiah M, Park IK, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885

    Article  CAS  Google Scholar 

  38. Liu J, Carrasco GC, Cheng F, Xu W, Willfor S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143

    Article  CAS  Google Scholar 

  39. Burkatovskaya M, Tegos GP, Swietlik E, Demidova TN, Castano AP, Hamblin MR (2006) Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials 27:4157–4164

    Article  CAS  Google Scholar 

  40. Kenawy ER, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2013) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372–380. https://doi.org/10.1016/j.arabjc.2013.05.026

    Article  CAS  Google Scholar 

  41. Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS, Kim JA, Choi HG (2008) Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359:79–86

    Article  CAS  Google Scholar 

  42. Hwang MR, Kim JO, Lee JH, Kim Y, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG (2010) Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech 11:1092–1102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would sincerely like to thank Symbiosis School of Biological Sciences (SSBS) and Symbiosis Center for Research and Innovation (SCRI), Symbiosis International (Deemed University) (SIU), Lavale, Pune, India for providing the research grants. The authors would like to thank Dr. Vinaykumar Rale (Director, SSBS) for providing Pullulan for the current research work. Ajinkya A. Shitole and Meghna Baruah kindly acknowledge SCRI, SIU for providing the Senior Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anand Khandwekar or Neeti Sharma.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shitole, A.A., Raut, P.W., Khandwekar, A. et al. Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. J Polym Res 26, 201 (2019). https://doi.org/10.1007/s10965-019-1874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1874-6

Keywords

Navigation