Skip to main content
Log in

Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effects of the β-cyclodextrin (CD) complexation of curcumin (CUR) and the quaternization of chitosan (CS) on the properties of the blend films were studied. The quaternized chitosan containing curcumin (CUR-QCS) and the quaternized β-cyclodextrin grafted with chitosan containing curcumin (CUR-QCD-g-CS) were prepared. The CUR-QCS or CUR-QCD-g-CS was blended with 4% w/v of poly(vinyl alcohol) (PVA) and cross-linked with glutaraldehyde to improve the mechanical properties of the blend films. These blend films were characterized for their chemical structure, thermal behaviors, mechanical properties, water swelling, and weight loss. In addition, the release study, antioxidant activity, and indirect cytotoxicity were investigated. From the results, the CUR-QCD-g-CS/PVA films showed higher mechanical properties but lower water swelling and weight loss behaviors than the CUR-QCS/PVA films. In addition, the released amount of CUR from the CUR-QCD-g-CS/PVA films and their antioxidant activity were higher than those from the CUR-QCS/PVA films due to the accommodation of CUR inside CD cavity. Thus, the CD complexation of CUR and the quaternization of CS had an effect on the properties of the blend films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Morton LM, Phillips TJ (2016) Wound healing and treating wounds: differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol 74:589–605

    Article  Google Scholar 

  2. Erfurt-Berge C, Renner R (2015) Chronic wounds–recommendations for diagnostics and therapy. Rev Vasc Med 3:5–9

    Article  Google Scholar 

  3. Frieri M, Kumar K, Boutin A (2016) Wounds, burns, trauma, and injury. Wound Med 13:12–17

    Article  Google Scholar 

  4. Dhivya S, Padma VV, Santhini E (2015) Wound dressings-a review. Biomedicine 5:22

    Article  Google Scholar 

  5. Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18:305–312

    Article  CAS  Google Scholar 

  6. Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21

    Article  CAS  Google Scholar 

  7. Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24:215

    Article  Google Scholar 

  8. Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74:840–844

    Article  CAS  Google Scholar 

  9. Anitha A, Sowmya S, Sudheesh Kumar PS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  10. Venter JP, Kotzé AF, Auzély-Velty R, Rinaudo M (2006) Synthesis and evaluation of the mucoadhesivity of a CD-chitosan derivative. Int J Pharm 313:36–42

    Article  CAS  Google Scholar 

  11. Ijaz M, Matuszczak B, Rahmat D, Mahmood A, Bonengel S, Hussain S, Huck CW, Bernkop-Schnürch A (2015) Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oraldrug delivery. Carbohydr Polym 132:187–195

    Article  CAS  Google Scholar 

  12. Centini M, Maggiore M, Casolaro M, Andreassi M, Facino RM, Anselmi C (2007) Cyclodextrins as cosmetic delivery systems. J Incl Phenom Macrocycl Chem 57:109–112

    Article  CAS  Google Scholar 

  13. Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359

    Article  CAS  Google Scholar 

  14. Cireli A, Yurdakul B (2006) Application of cyclodextrin to the textile dyeing and washing processes. J Appl Polym Sci 100:208–218

    Article  CAS  Google Scholar 

  15. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640

    Article  CAS  Google Scholar 

  16. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  17. Zhu D, Chen H, Li J, Zhang W, Shen Y, Chen S, Ge Z, Chen S (2016) Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mat Sci Eng C 61:79–84

  18. Ma G, Yang D, Zhou Y, Xiao M, Kennedy JF, Nie J (2008) Preparation and characterization of water-soluble N-alkylated chitosan. Carbohydr Polym 74:121–126

    Article  CAS  Google Scholar 

  19. Xie Y, Liu X, Chen Q (2007) Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydr Polym 69:142–147

    Article  CAS  Google Scholar 

  20. Hu Y, Peng J, Ke L, Zhao D, Zhao H, Xiao X (2016) Alginate/carboxymethyl chitosan composite gel beads for oral drug delivery. J Polym Res 23:129

    Article  Google Scholar 

  21. Anitha A, Divya Rani VV, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78:672–677

    Article  CAS  Google Scholar 

  22. Peng Y, Han B, Liu W, Xu X (2005) Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohydr Res 340:1846–1851

    Article  CAS  Google Scholar 

  23. Jia Z, Shen D, Xu W (2011) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333:1–6

    Article  Google Scholar 

  24. Koyano T, Koshizaki N, Umehara H, Nagura M, Minoura N (2000) Surface states of PVA/chitosan blended hydrogels. Polymer 41:4461–4465

    Article  CAS  Google Scholar 

  25. Chuang WY, Young TH, Yao CH, Chiu WY (1999) Properties of the poly (vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 20:1479–1487

    Article  CAS  Google Scholar 

  26. Chandy T, Sharma CP (1992) Prostaglandin E1-immobilized poly (vinyl alcohol)-blended chitosan membranes: blood compatibility and permeability properties. J Appl Polym Sci 44:2145–2156

    Article  CAS  Google Scholar 

  27. Rafique A, Zia KM, Zuber M, Tabasum S, Rehman S (2016) Chitosan functionalized poly (vinyl alcohol) for prospects biomedical and industrial applications: a review. Int J Biol Macromol 87:141–154

    Article  CAS  Google Scholar 

  28. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  Google Scholar 

  29. Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C (2014) Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces 117:520–527

    Article  CAS  Google Scholar 

  30. Gonil P, Sajomsang W, Ruktanonchai UR, Pimpha N, Sramala I, Nuchuchua O, Saesoo S, Chaleawleart-umpon S, Puttipipatkhachorn S (2011) Novel quaternized chitosan containing β-cyclodextrin moiety: synthesis, characterization and antimicrobial activity. Carbohydr Polym 83:905–913

    Article  CAS  Google Scholar 

  31. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  32. Madera-Santana TJ, Freile-Pelegrín Y, Azamar-Barrios JA (2014) Physicochemical and morphological properties of plasticized poly (vinyl alcohol)–agar biodegradable films. Int J Biol Macromol 69:176–184

    Article  CAS  Google Scholar 

  33. Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37:1921–1927

    Article  CAS  Google Scholar 

  34. Yadav VR, Suresh S, Devi K, Yadav S (2009) Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech 10:752–762

    Article  CAS  Google Scholar 

  35. Mohamed RR, Elella MHA, Sabaa MW (2015) Synthesis, characterization and applications of N-quaternized chitosan/poly (vinyl alcohol) hydrogels. Int J Biol Macromol 80:149–161

    Article  CAS  Google Scholar 

  36. Kono H, Teshirogi T (2015) Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Int J Biol Macromol 72:299–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Research and Researchers for Industries-RRI M.Sc. scholarship (MSD60I0010) and Jinnaluck Co., Ltd., the National Science and Technology Development Agency (NSTDA) and Mae Fah Luang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orawan Suwantong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaolaor, A., Phunpee, S., Ruktanonchai, U.R. et al. Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. J Polym Res 26, 43 (2019). https://doi.org/10.1007/s10965-019-1703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1703-y

Keywords

Navigation