Skip to main content
Log in

Development of pH-sensitive and antibacterial gelatin/citric acid/Ag nanocomposite hydrogels with potential for biomedical applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work aimed to prepare pH-sensitive and antibacterial drug releasing systems through a completely green route. To achieve this, the gelatin natural biopolymer was crosslinked with citric acid in the presence of Ag nanoparticles (NPs). Interestingly, Ag NPs formation and gelatin crosslinking were simultaneously occurred during annealing of samples without need for any toxic chemicals, which were confirmed by FTIR, UV-vis spectra, SEM and TEM observations. In addition, potential of the citric acid crosslinked-gelatin/Ag nanocomposite hydrogels was successfully explored for drug delivery applications using cefixime as a model drug. It was found that these hydrogels have pH-dependent swelling and drug release behavior with higher drug release at pH 7.4 compared to pH 1.2. Also, an antibacterial effect against the E. coli and S. aureus microorganisms was achieved by incorporation of Ag NPs into hydrogels. These hydrogels can be considered as stimuli responsive materials for oral drug delivery and wound dressing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pourmoazzen Z, Bagheri M, Entezami AA, Koshki KN (2013) pH-responsive micelles composed of poly (ethylene glycol) and cholesterol-modified poly (monomethyl itaconate) as a nanocarrier for controlled and targeted release of piroxicam. J Polym Res 20:295–307

    Article  Google Scholar 

  2. Hosseini AG, Bagheri M, Mohammad-Rezaei R (2016) Synthesis and fluorescence studies of dual-responsive nanoparticles based on amphiphilic azobenzene-contained poly (monomethyl itaconate). J Polym Res 23:161–173

    Article  Google Scholar 

  3. Nikfarjam N, Sabzi M, Sattari A (2014) Preparation of pH-sensitive nanoparticles with core-shell-corona morphology as an oral drug carrier. Polym Sci Ser B 56:871–882

    Article  CAS  Google Scholar 

  4. Rafi AA, Mahkam M (2015) Preparation of magnetic pH-sensitive microcapsules with an alginate base as colon specific drug delivery systems through an entirely green route. RSC Adv 5:4628–4638

    Article  Google Scholar 

  5. Drew VJ, Huang HY, Tsai ZH, Tsai HH, Tseng CL (2017) Preparation of gelatin/epigallocatechin gallate self-assembly nanoparticles for transdermal drug delivery. J Polym Res 24:188–198

    Article  Google Scholar 

  6. Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331

    Article  CAS  PubMed  Google Scholar 

  7. Anirudhan TS, Mohan AM (2018) Novel pH sensitive dual drug loaded-gelatin methacrylate/methacrylic acid hydrogel for the controlled release of antibiotics. Int J Biol Macromol 110:167–178

    Article  CAS  PubMed  Google Scholar 

  8. Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161:38–49

    Article  CAS  PubMed  Google Scholar 

  9. Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM (2015) Collagen and gelatin. Annu Rev Food Sci Technol 6:527–557

    Article  CAS  PubMed  Google Scholar 

  10. Djagny KB, Wang Z, Xu S (2001) Gelatin: a valuable protein for food and pharmaceutical industries. Crit Rev Food Sci Nutr 41:481–492

    Article  CAS  PubMed  Google Scholar 

  11. Santoro M, Tatara AM, Mikos AG (2014) Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 190:210–218

    Article  CAS  PubMed  Google Scholar 

  12. Gorgieva S, Kokol V (2011) Gelatine-based biomaterials and their bocompatibility: review and perspectives. In: Pignatello R (ed) Biomaterials applications for nanomedicine, 2rd edn. InTech, London

  13. Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhoutellier V (2015) Gelatin structure and composition linked to hard capsule dissolution: a review. Food Hydrocoll 43:360–376

    Article  CAS  Google Scholar 

  14. Gómez-Guillén MC, Giménez B, López-Caballero MA, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827

    Article  Google Scholar 

  15. Foox M, Zilberman M (2015) Drug delivery from gelatin-based systems. Expert Opin Drug Deliv 12:1547–1563

    Article  PubMed  Google Scholar 

  16. Buhus G, Peptu C, Popa M, Desbrieres J (2009) Controlled release of water soluble antibiotics by carboxymethylcellulose-and gelatin-based hydrogels crosslinked with epichlorohydrin. Cellul Chem Technol 43:141–151

    CAS  Google Scholar 

  17. Sarmah M, Banik N, Hussain A, Ramteke A, Sharma HK, Maji TK (2015) Study on crosslinked gelatin–montmorillonite nanoparticles for controlled drug delivery applications. J Mater Sci 50:7303–7313

    Article  CAS  Google Scholar 

  18. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33:362–369

    Article  CAS  PubMed  Google Scholar 

  19. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  20. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H (2018) Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 107:678–688

    Article  CAS  PubMed  Google Scholar 

  21. Won YW, Kim YH (2008) Recombinant human gelatin nanoparticles as a protein drug carrier. J Control Release 127:154–161

    Article  CAS  PubMed  Google Scholar 

  22. Qazvini NT, Zinatloo S (2011) Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 22:63–69

    Article  PubMed  Google Scholar 

  23. Amiji M, Tailor R, Ly MK, Goreham J (1997) Gelatin-poly (ethylene oxide) semi-interpenetrating polymer network with pH-sensitive swelling and enzyme-degradable properties for oral drug delivery. Drug Dev Ind Pharm 23:575–582

    Article  CAS  Google Scholar 

  24. Liu C, Zhang Z, Liu X, Ni X, Li J (2013) Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release. RSC Adv 3:25041–25049

    Article  CAS  Google Scholar 

  25. Uliniuc A, Hamaide T, Popa M, Băcăiță S (2013) Modified starch-based hydrogels cross-linked with citric acid and their use as drug delivery systems for levofloxacin. Soft Mater 11:483–493

    Article  CAS  Google Scholar 

  26. Abhari N, Madadlou A, Dini A (2017) Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel. Food Chem 214:16–24

    Article  CAS  PubMed  Google Scholar 

  27. Birck C, Degoutin S, Maton M, Neut C, Bria M, Moreau M, Fricoteaux F, Miri V, Bacquet M (2016) Antimicrobial citric acid/poly (vinyl alcohol) crosslinked films: effect of cyclodextrin and sodium benzoate on the antimicrobial activity. LWT - Food Sci Technol 68:27–35

    Article  CAS  Google Scholar 

  28. Wang S, Ren J, Li W, Sun R, Liu S (2014) Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydr Polym 103:94–99

    Article  CAS  PubMed  Google Scholar 

  29. Montazer M, Keshvari A, Kahali P (2016) Tragacanth gum/nano silver hydrogel on cotton fabric: in-situ synthesis and antibacterial properties. Carbohydr Polym 154:257–266

    Article  CAS  PubMed  Google Scholar 

  30. Uranga J, Leceta I, Etxabide A, Guerrero P, de la Caba K (2016) Cross-linking of fish gelatins to develop sustainable films with enhanced properties. Eur Polym J 78:82–90

    Article  CAS  Google Scholar 

  31. Jiang Q, Xu H, Cai S, Yang Y (2014) Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair. J Mater Sci Mater Med 25:1789–1800

    Article  CAS  PubMed  Google Scholar 

  32. Inoue M, Sasaki M, Nakasu A, Takayanagi M, Taguchi T (2012) An antithrombogenic citric acid-crosslinked gelatin with endothelialization activity. Adv Healthc Mater 1:573–581

    Article  CAS  PubMed  Google Scholar 

  33. Inoue M, Sasaki M, Katada Y, Fujiu K, Manabe I, Nagai R, Taguchi T (2013) Poly-(L-lactic acid) and citric acid-crosslinked gelatin composite matrices as a drug-eluting stent coating material with endothelialization, antithrombogenic, and drug release properties. J Biomed Mater Res Part A 101:2049–2057

    Article  Google Scholar 

  34. Jeong L, Park WH (2014) Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Int J Mol Sci 15:6857–6879

    Article  PubMed  PubMed Central  Google Scholar 

  35. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA (2011) Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomedicine 6:569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang XC, Chen CY, Chen WM, Yu AB (2009) Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26:4400–4408

    Article  Google Scholar 

  37. Pourjavadi A, Soleyman R (2011) Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity. J Nanopart Res 13:4647–4658

    Article  CAS  Google Scholar 

  38. Bryaskova R, Pencheva D, Kale GM, Lad U, Kantardjiev T (2010) Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. J Colloid Interface Sci 349:77–85

    Article  CAS  PubMed  Google Scholar 

  39. Hosseinzadeh H (2010) Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly (acrylic acid) superabsorbent hydrogel. J Chem Sci 122:651–659

    Article  CAS  Google Scholar 

  40. Deen GR, Chua V (2015) Synthesis and properties of new “stimuli” responsive nanocomposite hydrogels containing silver nanoparticles. Gels 1:117–134

    Article  Google Scholar 

  41. Mahdavinia GR, Soleymani M, Sabzi M, Azimi H, Atlasi Z (2017) Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of methylene blue. J Environ Chem Eng 5:2617–2630

    Article  CAS  Google Scholar 

  42. Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M (2016) Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption. Carbohydr Polym 147:379–391

    Article  CAS  PubMed  Google Scholar 

  43. Qazvini NT, Bolisetty S, Adamcik J, Mezzenga R (2012) Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization. Biomacromolecules 13:2136–2147

    Article  CAS  PubMed  Google Scholar 

  44. Mahdavinia GR, Mosallanezhad A, Soleymani M, Sabzi M (2017) Magnetic-and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug. Int J Biol Macromol 97:209–217

    Article  CAS  PubMed  Google Scholar 

  45. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  46. Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

    CAS  Google Scholar 

  47. Chaturvedi A, Bajpai AK, Bajpai J (2015) Preparation and characterization of poly (vinyl alcohol) cryogel-silver nanocomposites and evaluation of blood compatibility, cytotoxicity, and antimicrobial behaviors. Polym Compos 36:1983–1997

    Article  CAS  Google Scholar 

  48. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from Iran National Science Foundation INSF (96005424) and University of Maragheh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sabzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafagh, N., Sabzi, M. & Afshari, M.J. Development of pH-sensitive and antibacterial gelatin/citric acid/Ag nanocomposite hydrogels with potential for biomedical applications. J Polym Res 25, 259 (2018). https://doi.org/10.1007/s10965-018-1661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1661-9

Keywords

Navigation