Skip to main content
Log in

Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Due to increasing the prerequisite of accurate, innovative and practical synthetic protocols, the current study introduces a significant synthetic concern of core-shell nanocomposites (CSNCs) comprising ferric oxide. Fe2O3@poly(aniline -co- o-phenylenediamine) (Fe2O3@PANI-o-PDA) CSNCs were constructed applying fourfold molar ratio of the corresponding monomers and different amounts of γ-Fe2O3 via polycondensation. The construction of the Fe2O3@PANI-o-PDA CSNCs was affirmed using varied characterizations. The bond between γ-Fe2O3 and PANI-o-PDA was observed via FTIR spectra. The CSNCs features are having core-shell structures with sizes 20–49 nm and the corresponding specific surface area is 40.154 m2 g−1. These CSNCs bestow intense photocatalysis efficiency towards the degradation of MB dye under irradiation. Reasonable justifications of the photocatalytic efficacy consequences of MB were verified. The setup manipulates a new, facile, inexpensive and useful synthetic pathway to generate potential CSNCs in the quest for innovative formulations.

Novel Core-Shell Nanocomposites with Photocatalytic Activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fan J, Zhang S (2015) Facile preparation of Fe3O4/mesoporous TiO2 nanoparticles shell on polystyrene beads and its effective absorption of cyanobacteria in water. J Polym Res 22:182

    Article  CAS  Google Scholar 

  2. Al-Hussaini AS (2018) Novel benzidine and o-phenylenediamine copolymer-matrix microcomposites. J Inorg Organomet Polym Mater 28:871–879

    Article  CAS  Google Scholar 

  3. Al-Hussaini AS, Elias AM, Abd El-Ghaffar MA (2017) New poly(aniline-co-o-phenylenediamine)/kaolinite microcomposites for water decontamination. J Polym Environ 25:35–45

    Article  CAS  Google Scholar 

  4. Al-Hussaini AS (2016) Inexpensive fabrication and characterization of crystalline poly(o-anthranilic acid-co-o-phenylenediamine) emeraldine base/bentonite nanocomposites. Polym-Plast Technol Eng 55:386–1392

    Article  CAS  Google Scholar 

  5. Al-Hussaini AS, Eltabie KR, Rashad MEE (2016) One-pot modern fabrication and characterization of TiO2@terpoly (aniline, anthranilic acid and o-phenylenediamine) core-shell nanocomposites via polycondensation. Polymer 101:328–337

    Article  CAS  Google Scholar 

  6. Al-Hussaini AS (2016) New polymeric based materials: Terpoly (aniline, diphenyl amine, and o-anthranilic acid)/kaolinite composites. Polym Adv Technol 27:1604–1608

    Article  CAS  Google Scholar 

  7. Al-Hussaini AS (2017) In situ oxidative copolymerization and characterization of new poly (benzidine-co-o-phenylenediamine)/kaolinite microcomposites. Polym Sci Ser B Polym 59:372–378

    Article  CAS  Google Scholar 

  8. Al-Hussaini AS, Eldars W (2014) Non-conventional synthesis and antibacterial activity of poly(aniline-co-o-phenylenediamine) / bentonite nanocomposites. Des Monomers Polym 17:458–465

    Article  CAS  Google Scholar 

  9. Al-Hussaini AS, Eldars W (2016) Cheap synthesis, characterization and antibacterial efficacy of new copoly(o-nitroaniline-co-o-phenylenediamine) emeraldine base/bentonite composites. J Inorg Organomet Polym Mater 26:691–701

    Article  CAS  Google Scholar 

  10. Zoromba MS, Belal AAM, Al-Hussaini AS (2015) From copolymer precursor to metal oxides nanoparticles: synthesis and characterization of doped copper and cobalt copolymer via in situ and ex situ copolymerization. J Macromol Sci A 52:394–400

    Article  CAS  Google Scholar 

  11. Sivakumar K, Senthil Kumar V, Haldorai Y (2012) Zinc oxide nanoparticles reinforced conducting poly(aniline-co-p-phenylenediamine) nanocomposite. Compos Interfaces 19:397–409

    Article  CAS  Google Scholar 

  12. Al-Hussaini AS (2019) New crystalline poly(aniline-co-benzidine)/bentonite microcomposites: synthesis and characterization. Polym Bull 76:323–337

    Article  CAS  Google Scholar 

  13. Al-Hussaini AS (2015) Modified non-conventional synthesis of new terpoly (aniline, o-anthranilic acid and o-phenylenediamine) / bentonite composites. Polym-Plast Technol Eng 54:61–67

    Article  CAS  Google Scholar 

  14. Al-Hussaini AS, Elias AM, Abd El-Ghaffar MA (2019) New Terpolymer-Matrix microcomposites for heavy metal removal. J Macromol Sci A. https://doi.org/10.1080/10601325.2019.1617635

  15. Hu H, Ji F, Xu Y, Yu J, Liu Q, Chen L, Chen Q, Wen P, Lifshitz Y, Wang Y, Zhang Q, Lee S-T (2016) Reversible and precise self-assembly of janus metal-organosilica nanoparticles through a linker-free approach. ACS Nano 10:7323–7330

    Article  CAS  PubMed  Google Scholar 

  16. Percebom AM, Giner-Casares JJ, Claes N, Bals S, Loh W, Liz-Marzán LM (2016) Janus gold nanoparticles obtained via spontaneous binary polymer shell segregation. Chem Commun 52:4278–4281

    Article  CAS  Google Scholar 

  17. Guarrotxena N, Quijada-Garrido I (2016) Optical and swelling stimuli-response of functional hybrid nanogels: feasible route to achieve tunable smart core@shell plasmonic@polymer nanomaterials. Chem Mater 28:1402–1412

    Article  CAS  Google Scholar 

  18. Geng J, Li K, Pu KY, Ding D, Liu B (2012) Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 8:2421–2429

    Article  CAS  PubMed  Google Scholar 

  19. Zare EN, Lakouraj MM, Ramezani A. Effective adsorption of heavy metal cations by superparamagnetic poly(aniline-co-m-phenylenediamine)@Fe3o4 nanocomposite. (2015) Adv Polymer Tech 34:21501

  20. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  CAS  PubMed  Google Scholar 

  21. Quarta A, Curcio A, Kakwere H, Pellegrino T (2012) Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. Nanoscale 4:3319–3334

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Zhang Z (2011) Poly (BMA-co-NVP)/NiS core-shell hybrid materials via interfacial-initiated miniemulsion copolymerization and gamma-irradiation. J Polym Res 18:993–1000

    Article  CAS  Google Scholar 

  23. Shen P, Jiang W, Wang F, Chen M, Ma P, Li F, Preparation and characterization of Fe3O4@TiO2 shell on polystyrene beads. (2013) J Polym Res 20:252

  24. Li Z, Ye E, David R, Lakshminarayanan X, Loh J (2016) Recent advances of using hybrid nanocarriers in remotely controlled terapeutic delivery. Small 12:4782–4806

    Article  CAS  PubMed  Google Scholar 

  25. Bodelón G, Montes-García V, Fernández-López C, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2015) Au@pNIPAM serrs tags for multiplex immunophenotyping cellular receptors and imaging tumor cells. Small 11:4149–4157

    Article  PubMed  CAS  Google Scholar 

  26. Xiao C, Wu Q, Chang A, Peng Y, Xu W, Wu W (2014) Responsive Au@polymer hybrid microgels for the simultaneous modulation and monitoring of Au-catalyzed chemical reaction. J Mater Chem A 2:9514–9523

    Article  CAS  Google Scholar 

  27. Tang F, Ma N, Wang X, He F, Li L (2011) Hybrid conjugated polymer-Ag@PNIPAM fuorescent nanoparticles with metal-enhanced fuorescence. J Mater Chem 21:16943–16948

    Article  CAS  Google Scholar 

  28. Zhang J, Ma N, Tang F, Cui Q, He F, Li L (2012) pH- and glucose-responsive core-shell hybrid nanoparticles with controllable metal-enhanced fluorescence efects. ACS Appl Mater Interfaces 4:1747–1751

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Zuo J, Guo Y, Yuan X (2004). Macromolecules 37:10042–10046

    Article  CAS  Google Scholar 

  30. Ballauff M, Lu Y (2007). Polymer 48:1815–1823

    Article  CAS  Google Scholar 

  31. Blackburn W, Lyon L (2008). Colloid Polym Sci 286:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao XC, Chu LY, Chen WM, Wang S, Li Y (2003). Adv Funct Mater 13:847–852

    Article  CAS  Google Scholar 

  33. Al-Hussaini AS, Eltabie KR, Hassan MER (2018) Fabrication of core-shell nanocomposites with enhanced photocatalytic efficacy. Polym Int 67:1419–1428

    Article  CAS  Google Scholar 

  34. Jorge L, Olmedo-Martínez BF-MI, Vega-Rios A, Armando Zaragoza-Contreras E (2017). J Power Sources 366:233–240

    Article  CAS  Google Scholar 

  35. Xia H, Wang Q (2003). J Appl Polym Sci 87:1811

    Article  CAS  Google Scholar 

  36. Teoh GL, Liew KY, Mahmood WAK (2007) Preparation of polyaniline-Al2O3 composites nanofibers with controllable conductivity. Mater Lett 61:4947–4949

    Article  CAS  Google Scholar 

  37. Bandgar DK, Navale ST, Vanalkar SA, Kim JH, Harale NS, Patil PS, Patil VB (2014) Synthesis, structural, morphological, compositional and electrical transport properties of polyaniline/α-Fe2O3 hybrid nanocomposites. Synth Met 195:350–358

    Article  CAS  Google Scholar 

  38. Sen T, Shimpi NG, Mishra S, Sharma R (2014) Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensors Actuators B Chem 190:120–126

    Article  CAS  Google Scholar 

  39. Sarma TK, Chattopadhyay A (2004). J Phys Chem A 108:7837

    Article  CAS  Google Scholar 

  40. Kinyanjui JM, Harris-Burr R, Wagner JG, Wijeratne NR, Hatchett DW (2004). Macromolecules 37:8745

    Article  CAS  Google Scholar 

  41. Mirzaei A, Hashemi B, Janghorban K (2016) α-Fe2O3 based nanomaterials as gas sensors. J Mater Sci Mater Electron 27:3109–3144

    Article  CAS  Google Scholar 

  42. Abaker M, Umar A, Baskoutas S, Dar GN, Zaidi SA, Al-Sayari SA, Al-Hajry A, Kim SH, Hwang SW (2011) A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. J Phys D Appl Phys 44:425401

    Article  CAS  Google Scholar 

  43. Navale ST, Khuspe GD, Chougule MA, Patiln VB (2014) Room temperature NO2 gas sensor based on PPy/α-Fe2O3 hybrid nanocomposites. Ceram Int 40:8013–8020

    Article  CAS  Google Scholar 

  44. Li Y, Zhao HJ, Ban HT, Yang MJ (2017) Composites of Fe2O3 nanosheets with polyaniline: preparation, gas sensing properties and sensing mechanism. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2017.01.103

  45. Khanchandani S, Kundu S, Patra A, Ganguli AK (2013) Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J Phys Chem C 117:5558–5567

    Article  CAS  Google Scholar 

  46. Wu T, Zhou X, Zhang H, Zhong X (2010) Bi2S3 nanostructures: a new photocatalyst. Nano Res 3:379–386

    Article  CAS  Google Scholar 

  47. Strakhov IS, Mezhuev Ya. O., Korshak YV, Kovarskii AL, Shtil’man MI (2016) Preparation of magnetite nanoparticles modified with poly(о-phenylenediamine) and their use as drug carriers. Russ J Appl Chem 89:447–450

    Article  CAS  Google Scholar 

  48. Strakhov IS, Rodnaya AI, Mezhuev Ya. O., Korshak YV, Vagramyan TA (2014) Enhancement of the strength of a composite material based on ED-20 epoxy resin by reinforcement with a carbon fiber modified by electrochemical deposition of poly(o-phenylenediamine). Russ J Appl Chem 87:1918–1922

    Article  CAS  Google Scholar 

  49. Zhang D (2006) Preparation of core-shell structured alumina-polyaniline particles and their application for corrosion protection. J Appl Polym Sci 101:4372–4377

    Article  CAS  Google Scholar 

  50. Sim B, Chae HS, Choi HJ (2015) Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields. Exp Polym Lett 9:736–743

    Article  CAS  Google Scholar 

  51. Vasei M, Das P, Cherfouth H, Marsan B, Claverie JP (2014) TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation. Front Chem 2:47–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Muthirulan P, Nirmala Devi CK, Sundaram MM (2013) Facile synthesis of novel hierarchical TiO2@Poly(o-phenylenediamine) core-shell structures with enhanced photocatalytic performance under solar light. J Environ Chem Eng 1:620–627

    Article  CAS  Google Scholar 

  53. Jang J, Ha J, Lim B (2006) Synthesis and characterization of monodisperse silica-polyaniline core-shell nanoparticles. Chem Commun 162:1622–1624

    Article  CAS  Google Scholar 

  54. Gai L, Du G, Zuo Z, Wang Y, Liu D, Liu H (2009) Controlled synthesis of hydrogen titanate-polyaniline composite nanowires and their resistance temperature characteristics. J Phys Chem C 113:7610–7615

    Article  CAS  Google Scholar 

  55. Al-Hussaini AS, Klapper M, Pakula T, Müllen K (2004) Poly (imino ketone) s as new high-performance polymers. Macromolecules 37:8269–8277

    Article  CAS  Google Scholar 

  56. Al-Hussaini AS (2014) Synthesis and characterization of new thermally stable polymers as new high-performance engineering plastics. High Perform Polym 26:166–174

    Article  CAS  Google Scholar 

  57. Dutta AK, Maji SK, Adhikary B (2014) γ-Fe2O3 nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull 49:28–34

    Article  CAS  Google Scholar 

  58. Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013) Self-doped Ti3 +-enhanced TiO2 nanoparticles with a high-performance Photocatalysis. J Catal 297:236–243

    Article  CAS  Google Scholar 

  59. Dong D, Li P, Li X, Zhao Q, Zhang Y, Jia C, Li P (2010). J Hazard Mater 174:859–863

    Article  CAS  PubMed  Google Scholar 

  60. Yang C, Dong W, Cui G, Zhao Y, Shi X, Xia X, Tang B, Wang W (2017) Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD. Sci Rep 7:3973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Almasian A, Najafi F, Malekniaa L, Giahi M (2018) Mesoporous MgO/PPG hybrid nanofibers: synthesis, optimization, characterization and heavy metal removal property. New J Chem 42:2013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman S. Al-Hussaini.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Novel Fe2O3@PANI-o-PDA core-shell nanocomposites were successfully synthesized.

• Cheap monomers were utilized by 4:1 molar ratio via economical technique.

• Fe2O3@PANI-o-PDA core-shell was thermally stable than pure copolymer.

• Numerous characteristics of the newly synthesized core-shell nanocomposites were studied.

• TEM revealed core-shell nanocomposite structures with sizes 20-49 nm.

• Fe2O3 lowers the electrical conductivity of the core-shell nanocomposites.

• Photocatalytic efficacy of the MB degradation was elucidated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ossoss, K.M., Hassan, M.E.R. & Al-Hussaini, A.S. Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes. J Polym Res 26, 199 (2019). https://doi.org/10.1007/s10965-019-1856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1856-8

Keywords

Navigation