Skip to main content
Log in

Adsorptive removal of chromium(VI) using spherical resorcinol-formaldehyde beads prepared by inverse suspension polymerization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The spherical cross-linked beaded polymers were prepared by condensation of resorcinol and formaldehyde in presence of tri-ethylamine by inverse suspension polymerization technique. The m-cresol, aniline, urea and thiourea were used as co-monomer and polyethylene glycol (PEG 400) was used as porogen. Paraffin oil was used as non-aqueous suspension agent. The polymeric spherical beads were prepared using various types of comonomers exhibiting range of particle size 77.62 to 158.84 μm at 90 °C and 300 rpm for 4 h. The resulting beads were analyzed by elemental analysis, particle size analysis and scanning electron microscope (SEM). The synthesized beads were used for the removal of Cr(VI) from aqueous solutions. A simple and sensitive solid phase extraction procedure was used for the determination of chromium at trace level by spectrophotometric method using 1,5-diphenylcarbazide reagent. The adsorption of Cr(VI) on the resorcinol-formaldehyde beads was monitored by energy-dispersive X-ray spectroscopy (EDX) analysis. The metal adsorption parameters such as contact time, pH, metal ion concentration and adsorbent dose were investigated. For Cr(VI), the maximum adsorption capacity was about 99% at pH 2 for the resorcinol-formaldehyde beads obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lahari T, Lakshmi S, Yalangi S, Fadnavis N, Mulani K, Deokar S, Ponrathnam S (2012) Enzyme immobilization on epoxy supports in reverse micellar media: prevention of enzyme denaturation. J Mol Catal B Enzym 74:54–62

    Article  Google Scholar 

  2. Gonte R, Balasubramanian K, Mumbrekar J (2013) Porous and cross-linked cellulose beads for toxic metal ion removal: Hg(II) ions. Journal of Polymers 309:1–9

    Google Scholar 

  3. Okubo M, Mori H (1997) Production of multi-hollow polymer particles by the stepwise acid/alkali method. Colloid Polym Sci 275:634–639

    Article  CAS  Google Scholar 

  4. Charles J, Michael D (2002) Hollow latex particles: synthesis and applications. Adv Colloid Interf Sci 99:181

    Article  Google Scholar 

  5. Kim B, Kim J, Suh K (1999) Poly(methyl methacrylate) hollow particles by water-in-oil-in-water emulsion polymerization. Colloid Polym Sci 277:252–256

    Article  CAS  Google Scholar 

  6. Yi H, Changyou G, Yanchao S et al (2005) Preparation of porous polylactide microspheres by emulsion-solvent evaporation based on solution induced phase separation. Polym Adv Technol 16:622–627

    Article  Google Scholar 

  7. Bakelite L (1913) The chemical constitution of resinous phenolic condensation products. J Ind Eng Chem 5:506–511

    Article  Google Scholar 

  8. Gould D (1959) Phenolic resins. Reinhold, New York

    Google Scholar 

  9. Eghe A, Ahmed A, Gavin M, Mojtaba M, Mohammad N (2013) Preparation of controlled porosity resorcinol formaldehyde xerogels for adsorption applications. Chem Eng Trans 32:1651–1656

    Google Scholar 

  10. Eduardo V, Philip E, Archie E (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36:939–965

    Article  Google Scholar 

  11. Yuan H, Kalfas G, Ray W (2006) Suspension polymerization. J Macromol Sci Part C Polym Rev 31:215–299

    Article  Google Scholar 

  12. Vivaldo-Lima E, Wood P, Hamielec A, Penlidis A (1997) An updated reviews on suspension polymerization. Ind Eng Chem Res 36:939–965

    Article  CAS  Google Scholar 

  13. Dusan B, Jaromir S, Vladimir C (1996) Inverse suspension polymerization of the hydrophilic acrylic monomers in the static continuous phase. J Dispers Sci Technol 18:115–121

    Google Scholar 

  14. Harward D, Hartough P (1947) Modified phenol-formaldehyde resins. US patent 2546946

  15. Haroaki K, Shigeo S (1982) Granular or powdery phenol-aldehyde resins and process for production thereof. US patent 4454298

  16. Angelo P, Laurel M (1952) Reducing-sugar modified aniline-phenol-formaldehyde resins. US patent 2666037

  17. Raymond D, Anthony J (1978) Phenol-aldehyde-amine resin/glycol curative compositions. US patent 4195151

  18. Shrivastava S, Srivastava A, Singh B, Shah D, Verma A, Gutch P (2012) Study on phenolic resin beads: effect of reaction parameters on the properties of polymeric beads. J Appl Polym Sci 123:3741–3747

    Article  CAS  Google Scholar 

  19. Singh A, Lal D (2006) Effect of reaction parameters on the particle sizes of crosslinked spherical phenolic beads by suspension polymerization of phenol and formaldehyde. J Appl Polym Sci 100:2323–2330

    Article  CAS  Google Scholar 

  20. Zhou H, Huang G, Gao P, Long C (2007) Preparation of porous/hollow particles of phenolic resin. Polym Adv Technol 18:582–585

    Article  CAS  Google Scholar 

  21. Dwivedi C, Pathak S, Kumar M, Tripathi S, Bajaj P (2013) Removal of cesium by spherical resorcinol–formaldehyde resin beads: sorption and kinetic studies. J Radioanal Nucl Chem 297:1–8

    Article  CAS  Google Scholar 

  22. Wänninen E (1988) The determination of trace metals in natural waters,” ed by T. S. West and H. W. Nürnberg, Blackwell scientific publications, Oxford, London, pp-10

  23. Zouboulis A, Goetz L (1991) Ion flotation as a tool for speciation studies selective separation in the system Cr3+/Cr6+. Toxicol Environ Chem 31–32:539–547

    Article  Google Scholar 

  24. Fernandez Y, Maranon E, Castrillon L, Vazquez I (2005) Removal of cd and Zn from inorganic industrial waste leachate by ion exchange. J Hazard Mater 126:169–175

    Article  CAS  PubMed  Google Scholar 

  25. Kongsricharoern N, Polprasert C (1996) Chromium removal by a bipolar electrochemical precipitation process. Water Sci Technol 34:109–116

    Article  CAS  Google Scholar 

  26. Albino Kumar P, Ray M, Chakraborty S (2007) Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater 143:24–32

    Article  PubMed  Google Scholar 

  27. Pearson R (1968) Hard and soft acids, HSAB. Part І. Fundamental principles. J Chem Educ 45:581–587

    Article  CAS  Google Scholar 

  28. Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aaqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172:439–446

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Xing R, Liu S, Yu H, Qin Y, Li K, Feng J, Li R, Li P (2010) Recovery of silver (I) using a thiourea-modified chitosan resin. J Hazard Mater 180:577–582

    Article  CAS  PubMed  Google Scholar 

  30. Ertan E, Gulfen M (2009) Separation of gold(III) ions from copper(II) and zinc(II) ions using thiourea-formaldehyde or urea-formaldehyde chelating resins. J Appl Polym Sci 111:2798–2805

    Article  CAS  Google Scholar 

  31. Birinci E, Gülfen M, Aydın A (2009) Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Hydrometallurgy 95:15–21

    Article  CAS  Google Scholar 

  32. Lam K, Fong C, Yeung K (2007) Separation of precious metals using selective mesoporous adsorbents. Gold Bull 40:192–198

    Article  CAS  Google Scholar 

  33. Lam K, Yeung K, McKay G (2006) An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents. J Phys Chem B 110:2187–2194

    Article  CAS  PubMed  Google Scholar 

  34. Tai-Lin L, Hsing-Lung L (2013) Effective and selective recovery of precious metals by Thiourea modified magnetic nanoparticles. Int J Mol Sci 14:9834–9847

    Article  Google Scholar 

  35. Dhore M, Butoliya S, Zade A (2014) Removal of toxic metal ions from water using chelating Terpolymer resin as a function of different concentration time and pH. ISRN Polymer Science Article ID 873520

  36. Talha Gokmen M, Du Prez F (2012) Porous polymer particles- a comprehensive guide to synthesis,characterization, functionalization and applications. Prog Polym Sci 37:365–405

    Article  Google Scholar 

  37. Saralidze K, Koole L, Knetsch M (2010) Polymeric microspheres for medical applications. Materials 3:3537–3564

    Article  CAS  PubMed Central  Google Scholar 

  38. Mane S, Ponrathnam S, Chavan N (2016) Effect of Porogen concentration on surface area and porous properties of cross linked polymer beads. Can Chem Trans 4:192–200

    CAS  Google Scholar 

  39. Vivaldo-Lima E, Wood P, Hamielec A, Penlidis A (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36:939–965

    Article  CAS  Google Scholar 

  40. Srivastava S (2009) Co-polymerization of acrylates. Des Monomers Polym 12:1–18

    Article  CAS  Google Scholar 

  41. http://en.wikipedia.org/wiki/Polyethylene-glycol. Accesed 26 Aug 2017

  42. Ming G, Kamila G, Stokke B (2015) Swelling dynamics of a DNA-polymer hybrid hydrogel, prepared using polyethylene glycol as a Porogen. Gels 1:219–234

    Article  Google Scholar 

  43. Courtois J, Bystrom E, Irgum K (2006) Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer 47:2603–2611

    Article  CAS  Google Scholar 

  44. Bajpai K, Shrivastava M (2002) Swelling kinetics of a hydrogel of poly(ethylene glycol) and poly(acrylamide-co-styrene). J Appl Polym Sci 85:1419–1428

    Article  CAS  Google Scholar 

  45. Zhihui L, Wentao L, Zhongyuan L, Mingcheng Y, Xujing G, Haitao C, Suqin H, Chengshen Z (2013) Swelling and thermal properties of porous PNIPAM/PEG hydrogels prepared by radiation polymerization. Nucl Sci Tech 24:20201

    Google Scholar 

  46. Akolekar D, Hind A, Bhargava S (1998) Synthesis of Macro-, Meso-, and Microporous Carbons from Natural and Synthetic Sources, and Their Application as Adsorbents for the Removal of Quaternary Ammonium Compounds from Aqueous Solution. J Colloid Interface Sci 199:92–98

    Article  CAS  Google Scholar 

  47. Sánchez-Polo M, Rivera-Utrilla J (2002) Adsorbent-adsorbate interactions in the adsorption of cd(II) and Hg(II) on ozonized activated carbons. Environ Sci Technol 36:3850–3854

    Article  PubMed  Google Scholar 

  48. Mashitah M, Zulfadhly Z, Bhatia S (1999) Binding mechanism of heavy metals biosorption by Pycnoporus sanguineus. J Artif Cells Blood Subst and Immob Biotechnol 27:441–445

    Article  CAS  Google Scholar 

  49. Iscen C, Kiran I, Ilhan S (2007) Biosorption of reactive black 5 dye by Penicillium restrictum: the kinetic study. J Hazard Mater 143:335–340

    Article  CAS  PubMed  Google Scholar 

  50. Gao H, Sun Y, Zhou J, Xu R, Daun H (2013) Mussel inspired synthesis of polydopamine-functionalized grapheme hydrogel as reusable adsorbent for water purification. ACS Appl Mater Interfaces 5:425–432

    Article  CAS  PubMed  Google Scholar 

  51. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Sevenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  52. Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 38:89–99

    Article  CAS  Google Scholar 

  53. Yang R (1999) Gas Separation by Adsorption Processes. – Series on Chemical Engineering, vol 1. Publishers – Imperial College Press, London

    Google Scholar 

  54. Freundlich F, Heller W (1939) The adsorption of cis- and trans-Azobenzen. J Am Chem Soc 21:2228–2230

    Article  Google Scholar 

  55. Mulani K, Daniels S, Rajdeo K, Tambe S, Chavan N (2014) Tannin-aniline-formaldehyde resole resins for arsenic removal from ground water sources. Çanad Chem Transactions 2:450

    Google Scholar 

  56. Freundlich H (1926) Capillary and colloid chemistry. Methuen Co., Ltd., London

    Google Scholar 

  57. Langmuir H (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamini Donde.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulani, K., Patil, V., Chavan, N. et al. Adsorptive removal of chromium(VI) using spherical resorcinol-formaldehyde beads prepared by inverse suspension polymerization. J Polym Res 26, 41 (2019). https://doi.org/10.1007/s10965-019-1705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1705-9

Keywords

Navigation