Skip to main content
Log in

Removal of cesium by spherical resorcinol–formaldehyde resin beads: Sorption and kinetic studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Batch equilibrium studies were conducted at 20 ± 0.5 °C with indigenously synthesized spherical resorcinol–formaldehyde resin beads, using radioanalytical technique, to determine their capacity for sorption of cesium ions from alkaline medium. Equilibrium isotherm studies were carried out, by varying the initial concentrations of cesium from 0.1 to 50 mM. The liquid-to-solid phase ratio of ~100 ml:1 g was maintained for all the sorption experiments. The equilibrium data were fitted to Langmuir and Freundlich isotherm models. It was observed that Freundlich isotherm explains sorption process nicely. The effect of resin size on percentage cesium ion uptake was also investigated, and 20–40 mesh size was found to be the optimum particle size. The cesium sorption capacity of the beads was determined to be ~238 mg/g. The kinetics of the sorption was studied at different initial cesium ion concentrations, and the kinetics data were fitted into various kinetics models. The kinetics of the cesium ion sorption was found to be pseudo second-order. The mechanistic steps involved were found to be complex, consisting of both film diffusion and intraparticle diffusion with film diffusion as the rate limiting step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stark K, Pettersson HBL (2008) Radiat Environ Biophys 47:481–489

    Article  CAS  Google Scholar 

  2. Bertho JM, Louiba S, Faure MC, Tourlonias E, Stefani J, Siffert B, Paquet F, Dublineau I (2010) Radiat Environ Biophys 49:239–248

    Article  Google Scholar 

  3. Geras’Kin S, Oudalova A, Dikareva N, Spiridonov S, Hinton T, Chernonog EV, Garnier-Laplace J (2011) Ecotoxicology 20:1195–1208

    Article  Google Scholar 

  4. Svendsen ER, Kolpakov IE, Stepanova YI, Vdovenko VY, Naboka MV, Mousseau TA, Mohr LC, Hoel DG, Karmaus WJJ (2010) Environ Health Perspect 118:720–725

    Article  CAS  Google Scholar 

  5. Wood MD, Beresford NA, Semenov DV, Yankovich TL, Copplestone D (2010) Radiat Environ Biophys 49:509–530

    Article  CAS  Google Scholar 

  6. Ernest MV Jr, Bibler JP, Whitley RD, Wang NHL (1997) Ind Eng Chem Res 36:2775–2788

    Article  CAS  Google Scholar 

  7. Hritzko BJ, Walker DD, Wang NHL (2000) AIChE J 46:552–564

    Article  CAS  Google Scholar 

  8. Dwivedi C, Kumar A, Juby KA, Singh KK, Kumar M, Wattal PK, Bajaj PN (2012) RSC Adv 2:5557–5564

    Article  CAS  Google Scholar 

  9. Law JD, Herbst RS, Todd TA (2002) Sep Sci Technol 37:1353–1373

    Article  CAS  Google Scholar 

  10. Ibrahim GM (2010) Desalin Water Treat 13:418–426

    Article  CAS  Google Scholar 

  11. Mann NR, Todd TA (2004) Sep Sci Technol 39:2351–2371

    Article  CAS  Google Scholar 

  12. Smith FG, Lee SY, King WD, McCabe DJ (2008) Sep Sci Technol 43:2929–2942

    Article  CAS  Google Scholar 

  13. Lujaniene G, Meleshevych S, Kanibolotskyy V, Šapolaite J, Strelko V, Remeikis V, Oleksienko O, Ribokaite K, Ščiglo T (2009) J Radioanal Nucl Chem 3:787–791

    Article  Google Scholar 

  14. Tranter TJ, Vereshchagina TA, Utgikar V (2009) Solvent Extr Ion Exch 27:219–243

    Article  CAS  Google Scholar 

  15. Sepehrian H, Ahmadi SJ, Waqif-Husain S, Faghihian H, Alighanbari H (2010) J Hazard Mater 176:252–256

    Article  CAS  Google Scholar 

  16. Nilchi A, Maragheh MG, Khanchi AR (1999) Sep Sci Technol 34:1833–1843

    Article  CAS  Google Scholar 

  17. Zhang HY, Wang RS, Lin CSh, Zhang XY (2001) J Radioanal Nucl Chem 247:541–547

    Article  CAS  Google Scholar 

  18. Satyanarayana J, Murthy GS, Sasidhar P (1999) J Radioanal Nucl Chem 242:11–16

    Article  CAS  Google Scholar 

  19. Hassan NM, Adu-Wusu K, Marra JC (2004) J Radioanal Nucl Chem 262:579–586

    Article  CAS  Google Scholar 

  20. Adu-Wusu K, Hassan NM, Nash CA, Marra JC (2006) J Radioanal Nucl Chem 267:381–388

    Article  CAS  Google Scholar 

  21. Moller T, Harjula R, Paajanen A (2003) Sep Sci Technol 38:2995–3007

    Article  Google Scholar 

  22. Mishra SP, Vijaya (2007) Sep Purif Technol 54:10–17

    Article  CAS  Google Scholar 

  23. Inan S, Altas Y (2010) Sep Sci Technol 45:269–276

    Article  CAS  Google Scholar 

  24. Dwivedi C, Kumar A, Juby KA, Kumar M, Wattal PK, Bajaj PN (2012) Chem Eng J 193–194:178–186

    Article  Google Scholar 

  25. Hassan NM, Adu-Wusu K (2005) Solvent Extr Ion Exch 23:375–389

    Article  CAS  Google Scholar 

  26. Samanta SK, Ramaswamy M, Misra BM (1992) Sep Sci Technol 27:255–267

    Article  CAS  Google Scholar 

  27. Dwivedi C, Singh KK, Kumar M, Singh IJ, Bajaj PN (2012) Patent in process

  28. Das D, Das N, Mathew L (2012) J Hazard Mater 184:765–774

    Article  Google Scholar 

  29. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Ind Eng Chem Fundam 5:212–223

    Article  CAS  Google Scholar 

  30. Eftekhari S, Habibi-Yangjeh A, Sohrabnezhad S (2010) J Hazard Mater 178:349–355

    Article  CAS  Google Scholar 

  31. Ho YS, McKay G (1998) Can J Chem Eng 76:822–827

    Article  CAS  Google Scholar 

  32. Wu F-C, Tseng R-L, Juang R-S (2009) Chem Eng J 150:366–373

    Article  CAS  Google Scholar 

  33. Boyd GE, Adamson AW, Myers LS Jr (1947) J Am Chem Soc 69:2836–2848

    Article  CAS  Google Scholar 

  34. Reichenberg D (1953) J Am Chem Soc 75:589–597

    Article  CAS  Google Scholar 

  35. Singh BK, Rawat NSJ (1994) Chem Technol Biotechnol 61:57–65

    Article  CAS  Google Scholar 

  36. Sankar M, Sekaran G, Sadulla S, Ramasami T (1999) J Chem Technol Biotechnol 74:337–344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author, Charu Dwivedi, is grateful to BRNS, Department of Atomic Energy, for awarding research fellowship. The authors are thankful to Mr. J. Nuwad and Dr. C. G. S. Pillai, for SEM experiments, and Mr. T. V. V. Rao, Drs. K. T. Pillai and S. K. Mukerjee, for BET surface area measurement. The authors also wish to acknowledge Dr. T. Mukherjee, Mr. S. D. Misra, Dr. S. K. Sarkar and Mr. P. M. Gandhi, for their encouragement during the course of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmohan Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, C., Pathak, S.K., Kumar, M. et al. Removal of cesium by spherical resorcinol–formaldehyde resin beads: Sorption and kinetic studies. J Radioanal Nucl Chem 297, 1–8 (2013). https://doi.org/10.1007/s10967-012-2320-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2320-y

Keywords

Navigation