Skip to main content
Log in

Enhancement of Na+ ion conduction in polymer blend electrolyte P(VdF-HFP) – PMMA- NaTf by the inclusion of EC

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyvinylidenefluoride-co-hexafluoropropylene(PVdF-HFP) and polymethylmethacrylate (PMMA) and sodium triflate(NaTf) were used to prepare P(VdF-HFP)-PMMA-NaTf electrolytes using solution casting technique. The liquid plasticizer ethylene carbonate (EC) was added to the electrolytes in different concentrations say 10, 20, 30 and 40 wt% to achieve the enhancement of Na+ ion conduction at room temperature. Ionic conductivity of the samples was determined using AC impedance analysis and it was 7.86 × 10−8 S cm−1 for the polymer blend electrolyte at room temperature. Inclusion of EC was found to enhance the Na+ ion conduction and maximum value of ionic conductivity, 1.86 × 10−4 S cm−1, was obtained for the EC concentration of 30 wt%. This observation was explained on the basis of FTIR, XRD and AFM analysis of the samples which revealed the enhanced EC-polymer interaction and hence fast ion transport. Larger increase of dielectric constants and the reduced dielectric loss of EC added polymer blend electrolytes revealed the increase of the number of free Na+ ions. Thermal analysis of the samples was done through TGA-DTG technique and the thermal stability was found to decrease after the addition of EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ponrouch D, Monti A, Steen BB, Johansson P, Palacin MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3:22–42

    Article  CAS  Google Scholar 

  2. Xuel Y, Li X, Quesnel DJ (2017). Int J Electrochem Sci 12:10674–10686

    Google Scholar 

  3. Zhu Y, Yang Y, Fu L, Wu Y (2017) A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochim Acta 224:405–411

    Article  CAS  Google Scholar 

  4. Xue Y, Quesnel DJ (2016) Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Adv 6:7504–7510

    Article  CAS  Google Scholar 

  5. Cisnerosa CSM, Levenfelda B, Vareza A, Sancheza JY (2016) Development of sodium-conducting polymer electrolytes: comparison between film-casting and films obtained via green processes. Electrochim Acta 192:456–466

    Article  Google Scholar 

  6. Aravindan V, Lakshmi C, Vickraman P (2009) Investigations on Na+ ion conducting polyvinylidenefluoride-co-hexafluoropropylene/poly ethylmethacrylate blend polymer electrolytes. Curr Appl Phys 9:1106–1111

    Article  Google Scholar 

  7. Tripathi SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bull Mater Sci 35(6):969–975

    Article  CAS  Google Scholar 

  8. Tripathi SK, Jain A, Gupta A, Kumari M, Pure IJ (2013) Appl. Physics 51:315–319

    CAS  Google Scholar 

  9. Mindemark J, Mogensen R, Michael Smith J, Manuela Silva M, Brandell D (2017) Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries. Electrochem Commun 77:58–61

    Article  CAS  Google Scholar 

  10. Noor SAM, Su NC, Mohamad NS, Ahmad A, Yahya MZA, Zhu HM, Forsyth DR, MacFarlane (2017). Electrochimica Acta 247:983–993

    Article  CAS  Google Scholar 

  11. Austen Angell C (2017) Polymer electrolytes—Some principles, cautions, and new practices. Electrochim Acta 250:368–375

    Article  Google Scholar 

  12. Zhua X, Zhao R, Deng W, Ai X, Yang H, Cao Y (2015) An All-solid-state and All-organic Sodium-ion Battery based on Redox-active Polymers and Plastic Crystal Electrolyte. Electrochim Acta 178:55–59

    Article  Google Scholar 

  13. Singh P, Bharati DC, Gupta PN, Saroj AL (2018) Vibrational, thermal and ion transport properties of PVA-PVP-PEG-MeSO 4 Na based polymer blend electrolyte films. J Non-Cryst Solids 494:21–30

    Article  CAS  Google Scholar 

  14. Jayanthi S, Arulsankar A, Sundaresan B (2016). Appl Phys A Mater Sci Process 122(109):1–11

    CAS  Google Scholar 

  15. Rajendran S, Prabhu MR, Rani M (2008). Int J Electrochem Sci 3:282–290

    CAS  Google Scholar 

  16. Chaurasia SK, Saroj AL, Singh S, VK TAK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5(077178):1–13

    Google Scholar 

  17. Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168

    Article  CAS  Google Scholar 

  18. Liew CW, Arifin KH, Kawamura J, Iwai Y, Ramesh S, Arof AK (2015) J. Non-cyst. Solids 425:163–172

    CAS  Google Scholar 

  19. Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cyst Solids 357:3654–3660

    Article  CAS  Google Scholar 

  20. Ning W, Xingxiang Z, Haihuib L, Benqiao H (2009) 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484

    Article  Google Scholar 

  21. Ji KS, Moon HS, Kim JW, Park JW (2003) Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. J Power Sources 117:124–130

    Article  CAS  Google Scholar 

  22. Isa KBM, Othman L, Zainol NH, Samin SM, Chong WG, Osman Z, Arof AK (2014) Key Eng. Mater. 594-595:786–792

    Google Scholar 

  23. Zidan HM, El-Ghamaz NA, Abdelghany AM, Lotfy A (2016). Int JElectrochem Sci 11:9041–9056

    Article  CAS  Google Scholar 

  24. Othman L, Md Isa KB, Osman Z, Yahya R (2017) Ionic Transport Studies of Gel Polymer Electrolytes Containing Sodium Salt. Mater Today Proc 4:5122–5129

    Article  Google Scholar 

  25. Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K (2017) Presence of NaI in PEO/PVdF-HFP blend based gel polymer electrolytes for fabrication of dye-sensitized solar cells. Mater Sci Semicond Process 66:144–148

    Article  CAS  Google Scholar 

  26. Vignarooban K, Badami P, Dissanayake KL, Ravirajan P, Kannan AM (2017) Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics 23:2817–2822

    Article  CAS  Google Scholar 

  27. Hashmi SA, Bhat MY, Singh MK, Kalyana Sundaram NT, Raghupathy PC, Tanaka H (2016) Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 20(10):2817–2826

    Article  CAS  Google Scholar 

  28. Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181:416–423

    Article  CAS  Google Scholar 

  29. KarthikeyanS, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J Polym Res 23:51

  30. Shmukler LE, Van Thuc N, Fadeeva YA, Safonova LP (2012) Proton conducting gel electrolytes based on polymethylmethacrylate doped with sulfuric acid solutions in N,N-dimethylformamide. J Polym Res 19:9770

    Article  Google Scholar 

  31. Chandra MVL, Karthikeyan S, Selvasekarapandian S, Premalatha M (2017) Sampath Monisha. J Polym Eng 37(6):617–631

    Google Scholar 

  32. Rhodes CP, Frech R (1999) Cationâ anion and cationâ polymer interactions in (PEO)nNaCF3SO3 (n=1â 80). Solid State Ionics 121:91–99

    Article  CAS  Google Scholar 

  33. Saika D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO 4 polymer gel electrolytes. Electrochim Acta 49:2581–2589

    Article  Google Scholar 

  34. Kumar GG, Kim P, Kim AR, Nahm KS, Elizabeth RN (2009). Mater Chem Phys 11:40–46

    Article  Google Scholar 

  35. Johnscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  Google Scholar 

  36. Natesan B, Karan NK, Katiyar RS (2006). Phys Rev E 74(0420801):1–4

    Google Scholar 

  37. Sudhakar YN, Selvakumar M, Krishna Bhat D (2018) Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage. Elsevier ISBN: 978–0–12-813447-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Premalatha M or Sundaresan B.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjana, P.A.B., S, J., S, A. et al. Enhancement of Na+ ion conduction in polymer blend electrolyte P(VdF-HFP) – PMMA- NaTf by the inclusion of EC. J Polym Res 26, 38 (2019). https://doi.org/10.1007/s10965-019-1704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1704-x

Keywords

Navigation