Skip to main content
Log in

Synthesis and characterization of poly(urethane-imide) derived from structural effect of diisocyanates

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Although polyurethane (PU) has excellent extensibility and flexibility, it is thermally unstable, which limits how it can be utilized. By contrast, polyimide (PI) is a high-performance and thermally stable polymer that nonetheless has many limitations. In this study, the advantages of PU and PI are combined by copolymerizing them to obtain a composite material with high elasticity, high heat resistance, and favorable thermal stability. Poly(urethane-imide) (PUI) films were fabricated through bulk polymerization of polycaprolactone diol with various diisocyanates and then chain extension with various amounts of pyromellitic dianhydride (PMDA). PMDA content of 15.4 wt% was discovered to achieve the optimal balance between elasticity and rigidity; for this content, the material switched from being elastic-like to plastic-like. The optimal glass transition temperatures of the soft and hard segments [Tg(S) and Tg(H), respectively] could be achieved by adjusting the degree of phase separation (influenced by crystallization), structural arrangement (such as linear or crankshaft structure), and choice of an aromatic or aliphatic system. When the soft segment of the material was more crystalline, Tg(S) was lower and more microphase separation occurred. By contrast, Tg(H) was affected by the structure of the hard segment; a crankshaft structure resulted in lower Tg(H) due to destruction of imide group stacking. The hard segment structure also affected the material’s viscoelastic response, with this response being better for linear and aromatic systems. The PUI fabricated in this study is a highly flexible and thermally stable material and thus has potential for use in high-temperature processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Szycher M (2013) Szycher’s handbook of Polyurethanes, 2th ed.; CRC Press

  2. Sonnenschein MF (2015) Polyurethanes: Science, Technology, Markets, and Trends, 2th ed.; John Wiley & Sons, Inc.

  3. Haponiuk JT, Formela K (2017) Chapter 1 - PU Polymers, Their Composites, and Nanocomposites: State of the Art and New Challenges. Composites and Nanocomposites; Elsevier Inc., In Polyurethane Polymers, pp 1–20

    Google Scholar 

  4. Tsai MH, Huang SL, Liu SJ, Chen CJ, Chen PJ, Chen SH (2008) Synthesis and properties of poly(urethane-imide) interpenetrating network membranes. Desalination 1–3(233):191–200. https://doi.org/10.1016/j.desal.2007.09.042

    Article  CAS  Google Scholar 

  5. Lee DK, Tsai HB (2000) Properties of Segmented Polyurethanes Derived from Different Diisocyanates. J Appl Polym Sci 1(75):167–174. https://doi.org/10.1002/(SICI)1097-4628(20000103)75:1%3c167::AID-APP19%3e3.0.CO;2-N

    Article  Google Scholar 

  6. Lee DK, Tsai HB, Tsai RS, Chen PH (2007) Preparation and Properties of Transparent Thermoplastic Segmented Polyurethanes Derived From Different Polyols. Polym Eng Sci 5(47):695–701. https://doi.org/10.1002/pen.20742

    Article  CAS  Google Scholar 

  7. Yeganeh H, Jamshidi S, Talemi PH (2006) Synthesis, characterization and properties of novel thermally stable poly(urethane-oxazolidone) elastomers. Eur Polym J 8(42):1743–1754. https://doi.org/10.1016/j.eurpolymj.2006.02.011

    Article  CAS  Google Scholar 

  8. Afshari M, Dinari M (2021) A novel triazine-based covalent organic framework: Enhancement fire resistance and mechanical performances of thermoplastic polyurethanes. Compos A: Appl Sci Manuf 147:106453. https://doi.org/10.1016/j.compositesa.2021.106453

    Article  CAS  Google Scholar 

  9. Yang R, Wang B, Han X, Ma B, Li J (2017) Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate. Polym Degrad Stab 144:62–69. https://doi.org/10.1016/j.polymdegradstab.2017.08.008

    Article  CAS  Google Scholar 

  10. Yang SY, Yuan S (2018) Chapter 1 - Advanced Polyimide Films. In Advanced Polyimide Materials: Synthesis, Characterization and Applications; Elsevier Inc., pp 1–66

  11. Abajo de J, Campa de la JG (1999) Processable Aromatic Polyimides. In Progress in Polyimide Chemistry I; Adv Polym Sci 140; Springer-Verlag, pp 23–59

  12. Visser AC, Driessen AA, Wolke JGC (1980) Segmented copolyether-imides, 2. Makromol Chem Rapid Commun 1,177- 181. https://doi.org/10.1002/marc.1980.030010309

  13. Al-Salah HA (1991) Synthesis and Properties of Poly(urethane-urea-imide) Block Copolymers. Polym J 7(23):815–821. https://doi.org/10.1295/polymj.23.815

  14. Masiulanis B, Zielinski R (1985) Mechanical, thermal, and electric properties of polyurethaneimide elastomers. J Appl Polym Sci 7(30):2731–2741. https://doi.org/10.1002/app.1985.070300702

    Article  Google Scholar 

  15. Patel HS, Vyas HS (1991) Poly(urethane-imide)s—1. Eur Polym J 1(27):93–96. https://doi.org/10.1016/0014-3057(91)90132-8

  16. Zuo M, Takeichi T (1997) Novel Method for the Preparation of Poly (urethane–imide)s and Their Properties. J Polym Sci A: Polym Chem 17(35):3745–3753. https://doi.org/10.1002/(SICI)1099-0518(199712)35:17%3c3745::AID-POLA14%3e3.0.CO;2-D

    Article  Google Scholar 

  17. Yeganeh H, Shamekhi MA (2004) Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer 2(45):359–365. https://doi.org/10.1016/j.polymer.2003.11.006

    Article  CAS  Google Scholar 

  18. Chen RS, Cheng YL, Chang KW (2009) Synthesis and properties of novel poly (urethane-imide) dispersions based on 2,2-bis[N-(3-hydroxyphenyl)phthalimidyl] hexafluoropropane. J Appl Polym Sci 1(111):517–524. https://doi.org/10.1002/app.29075

    Article  CAS  Google Scholar 

  19. Asai K, Inoue SI, Okamoto H (2000) Preparation and Properties of Imide-Containing Elastic Polymers from Elastic Polyureas and Pyromellitic Dianhydride. J Polym Sci A Polym Chem 4(38):715–723. https://doi.org/10.1002/(SICI)1099-0518(20000215)38:4%3c715::AID-POLA6%3e3.0.CO;2-8

    Article  Google Scholar 

  20. Gnanarajan PT, Iyer PP, Nasar SA, Radhakrishnan G (2002) Preparation and properties of poly(urethane-imide)s derived from amine-blocked-polyurethane prepolymer and pyromellitic dianhydride. Eur Polym J 3(38):487–495. https://doi.org/10.1016/S0014-3057(01)00216-6

  21. Chen J, Zhang J, Zhu T, Hua Z, Chen Q, Yu X (2001) Blends of thermoplastic polyurethane and polyether–polyimide: preparation and properties. Polymer 4(42):1493–1500. https://doi.org/10.1016/S0032-3861(00)00527-9

    Article  Google Scholar 

  22. Kogiso T, Inoue SI (2010) Synthesis and Properties of Elastic Polyurethane-Imide. J Appl Polym Sci 1(115):242–248. https://doi.org/10.1002/app.31126

    Article  CAS  Google Scholar 

  23. Yeganeh H, Atai M, Talemi PH, Jamshidi S (2006) Synthesis, Characterization and Properties of Novel Poly(urethane-imide) Networks as Electrical Insulators with Improved Thermal Stability. Macromol Mater Eng 7(291):883–894. https://doi.org/10.1002/mame.200600120

    Article  CAS  Google Scholar 

  24. Zuo M, Takeichi T (1999) Preparation and characterization of poly(urethane–imide) films prepared from reactive polyimide and polyurethane prepolymer. Polymer 18(40):5153–5160. https://doi.org/10.1016/S0032-3861(98)00726-5

    Article  Google Scholar 

  25. Takeichi T, Ujiie K, Inoue K (2005) High performance poly(urethane-imide) prepared by introducing imide blocks into the polyurethane backbone. Polymer 25(46):11225–11231. https://doi.org/10.1016/j.polymer.2005.09.075

    Article  CAS  Google Scholar 

  26. Nair RP, Nair RCP, Francis DJ (1999) Effect of Imide–Oxazolidinone Modification on the Thermal and Mechanical Properties of HTPB-Polyurethanes. J Appl Polym Sci 11(71):1731–1738. https://doi.org/10.1002/(SICI)1097-4628(19990314)71:11<1731::AID-APP2>3.0.CO;2-M

  27. Tang Q, Song Y, He J, Yang R (2014) Synthesis and Characterization of Inherently Flame-Retardant and Anti-Dripping Thermoplastic Poly(imides-urethane)s. J Appl Polym Sci 18(131):40801. https://doi.org/10.1002/app.40801

    Article  CAS  Google Scholar 

  28. Didenko AL, Kuznetcov DA, Smirnova VE, Popova EN, Vaganov GV, Ivanov AG, Yudin VE, Svetlichnyi VM, Kudryavtsev VV (2020) Co-poly(urethane-imide)s based on poly[di(ethylene glycol) adipate] and their compositions with thermoplastic polyimide: synthesis and properties. Russ Chem Bull 69:369–377. https://doi.org/10.1007/s11172-020-2769-8

    Article  CAS  Google Scholar 

  29. Ueda T, Nishio T, Inoue S (2017) Influences of Diamines on the Morphologies and the Chemical, Thermal, and Mechanical Properties of Polyurethane-Imide Elastomers. Open J Org Polym Mater 7:47–60. https://doi.org/10.4236/ojopm.2017.74004

    Article  CAS  Google Scholar 

  30. Ma R, Zhao T, Pu H, Sun M, Cui Y, Xie X (2020) Synthesis of Interpenetrating Polymer Networks Based on Triisocyanate-Terminated and Modified Poly(urethane-imide) with Superior Mechanical Properties. ACS Omega 5(12):6911–6918. https://doi.org/10.1021/acsomega.0c00267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zdrahala RJ, Hager SL, Gerkin RM, Critchfield FE (1980) Polyether Based Thermoplastic Polyurethanes Effect of the Soft Segment Molecular Weight. J Elastomers Plast 12:225. https://doi.org/10.1177/009524438001200404

    Article  CAS  Google Scholar 

  32. Zdrahala RJ, Gerkin RM, Hager SL, Critchfield FE (1979) Polyether-based thermoplastic polyurethanes. I. Effect of the hard-segment content. J Appl Polym Sci 9(24):2041–2050. https://doi.org/10.1002/app.1979.070240912

  33. Banerjee S, Maji S (2011) High-Performance Processable Aromatic Polyamides. Scrivener Publishing LLC., In High Performance Polymers and Engineering Plastics, pp 111–166

    Google Scholar 

  34. Harris FW, Hsu SL-C (1989) Synthesis and Characterization of Polyimides Based on 3,6-Diphenylpyromellitic Dianhydride. High Perform Polym 1(3). https://doi.org/10.1177/095400838900100101

  35. Saruwatari M, Tsuji S, Fujii Y (1991) Extrusion process of polyimide and polyimide pellet used for the process, US 5 069 848 A

  36. Jung Y, Yang Y, Lee S, Byun S, Jeon H (2015) Characterization of fluorinated polyimide morphology by transition mechanical analysis. Polymer 59:200–206. https://doi.org/10.1016/j.polymer.2015.01.007

    Article  CAS  Google Scholar 

  37. Seo J, Han H, Lee A, Han J (1999) Effect of Isomeric Oxydiphenylene Diamine on the Water Sorption Behavior of High Temperature Polyimide Thin Films. Polymer J 4(31):324–331. https://doi.org/10.1295/polymj.31.324

    Article  Google Scholar 

  38. Oertel G (1994) Polyurethane Handbook; 2th ed.; Hanser Pub. Inc.

  39. Xie R, Rosenberg RO, Singh A, Peter TH, Palinkas RL (2009) High performance polyurethane elastomers from MDI prepolymers with reduced content of free MDI monomer. US2009076239 A1

  40. Masiulanis B (1984) Thermoplastic polyurethane elastomers—thermostability in relation to composition. J Appl Polym Sci 29:681–690. https://doi.org/10.1002/app.1984.070290224

    Article  CAS  Google Scholar 

  41. Cowie JMG, Arrighi V (2008) Polymers: chemistry and physics of modern materials; 3th ed.; CRC Press

  42. Majsztrik PW, Bocarsly AB, Benziger JB (2008) Viscoelastic Response of Nafion. Effects of Temperature and Hydration on Tensile Creep. Macromolecules 24(41):9849–9862. https://doi.org/10.1021/ma801811m

  43. Cheng BX, Gao WC, Ren XM, Ouyang XY, Zhao Y, Zhao H, Wu W, Huang CX, Liu Y, Liu XY, Li HN, Li Robert KY (2022) A review of microphase separation of polyurethane: Characterization and applications. Polym Test107:107489. https://doi.org/10.1016/j.polymertesting.2022.107489

  44. Tsuji H, Ikada Y (1995) Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 14(36):2709–2716. https://doi.org/10.1016/0032-3861(95)93647-5

  45. Krishnan SGP, Cheng CZ, Cheng YS, Cheng JWC (2003) Macromol Mater Eng 9(288):730–736. https://doi.org/10.1002/mame.200300030

  46. Zuo H, Chen Y, Qiana G, Yao F, Li H, Dong J, Zhao X, Zhanga Q (2022) Effect of simultaneously introduced bulky pendent group and amide unit on optical transparency and dimensional stability of polyimide film. Eur Polym J 173:111317. https://doi.org/10.1016/j.eurpolymj.2022.111317

    Article  CAS  Google Scholar 

  47. Seok WC, Leem JT, Song HJ (2022) Acrylic pressure-sensitive adhesives based on ethylene glycol acrylate for flexible display application: Highly elastic and recoverable properties. Polym Test 108:107491. https://doi.org/10.1016/j.polymertesting.2022.107491

    Article  CAS  Google Scholar 

  48. Chisca S, Marchesi T, Falca G, Musteata VE, Huang T, Edy AH, Nunes SP (2020) Organic solvent and thermal resistant polytriazole membranes with enhanced mechanical properties cast from solutions in non-toxic solvents. J Membr Sci 597:117634. https://doi.org/10.1016/j.memsci.2019.117634

Download references

Funding

This work was supported by the KUROKI Co., Ltd. grant. This work was also supported by the Ministry of Science and Technology of Taiwan (MOST 111–2634-F-027–001-).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design: S.P. Rwei, C.L. Lin; data collection: C.L. Lin, W.L. Lin; analysis and interpretation of results: C.L. Lin, W.L. Lin; draft manuscript preparation: C.L. Lin. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Syang-Peng Rwei.

Ethics declarations

Conflict of interest

The authors declare that have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CL., Lin, WL. & Rwei, SP. Synthesis and characterization of poly(urethane-imide) derived from structural effect of diisocyanates. J Polym Res 30, 54 (2023). https://doi.org/10.1007/s10965-022-03408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03408-5

Keywords

Navigation