Skip to main content
Log in

Investigation of the formation characteristics of polyaniline and its application in forming free-standing pressure filtration membranes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

PANI particles were synthesised through the chemical polymerisation of an ammonium persulfate (APS) and aniline (ANI) solution with/without lithium chloride (LiCl) at different reaction times (6–24 h) and temperatures (3–24 °C). SEM images, along with GPC results, confirmed that PANI synthesised at different parameters affects the PANI morphology and molecular weight (MW). Meanwhile, TGA and DSC results represent the thermal properties of synthesised PANI and reveal that PANI without LiCl addition has the lowest melting temperature. Based on the results, the best PANI was successfully synthesised at a temperature of 3 °C and at a reaction time of 6 h with the addition of LiCl. A free-standing PANI membrane was obtained through phase inversion upon using PANI in NMP/4MP of 18, 20, and 23 wt%. A rejection study showed that the free-standing PANI membrane with 23 wt% concentration was in nanofiltration (NF), whereas others were in the ultrafiltration (UF) range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Idris A, Zain NM (2006) Effect of heat treatment on the performance and structural details of polyethersulfone ultrafiltration membranes. Jurnal Teknologi 44:27–40

    Article  Google Scholar 

  2. Kim KJ, Fanen AG, Ben Aimb R, Liub MG, Jonsson G, TessaroC IC, Broekd AP, Bargemand D (1994) A comparative study of techniques used for porous membrane characterization: pore characterization. J Membr Sci 87:35–46

    Article  CAS  Google Scholar 

  3. Patterson DA, Yenlau L, Roengpithya C, Gibbins E, Livingston A (2008) Membrane selectivity in the organic solvent nanofiltration of trialkylamine bases. Desalination 218:248–256

    Article  CAS  Google Scholar 

  4. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262. doi:10.1016/j.polymer.2006.01.084

    Article  CAS  Google Scholar 

  5. Khulbe KC, Feng CY, Matsuura T (2008) Synthetic polymeric membranes characterization. Atomic Force Microscopy 18:5–14

    Google Scholar 

  6. Ball IJ, Huang S-C, Wolf RA, Shimano JY, Kaner RB (2000) Pervaporation studies with polyaniline membranes and blends. J Membr Sci 174:161–176

    Article  CAS  Google Scholar 

  7. Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Gas separation membranes: a novel application for conducting polymers. Synth Met 41:1151–1154

    Article  CAS  Google Scholar 

  8. Macdiarmid AG, Chiang JC, Richter AF (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290

    Article  CAS  Google Scholar 

  9. Xu H, Li X, Wang G (2015) Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. J Power Sources 294:16–21

    Article  CAS  Google Scholar 

  10. Harsha SK, Sumedh PS, Xinyu Z, Alan GM, Sanjeev KM (2005) Absolute molecular weight of polyaniline. J Am Chem Soc 127:6770–16771

    Google Scholar 

  11. Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2008) Synthesis of polyaniline nanofibrils using an in situ seeding technique. Synth Met 158:695–703

    Article  CAS  Google Scholar 

  12. Zujovic ZD, Bowmaker GA, Tran HD, Kaner RB (2009) Solid-state NMR of polyaniline nanofibers. Synth Met 159:710–714

    Article  CAS  Google Scholar 

  13. Rahy A, Yang DJ (2008) Synthesis of highly conductive polyaniline nanofibers. Mater Lett 62:4311–4314

    Article  CAS  Google Scholar 

  14. Wang Y, Chen K, Li T, Li H, Zeng R, Zhang R, Gu Y, Ding J, Liu H (2014) Soluble polyaniline nanofibers prepared via surfactant-free emulsion polymerization. Synth Met 198:293–299

    Article  CAS  Google Scholar 

  15. Wang Y, Jing X (2007) Transparent conductive thin films based on polyaniline nanofibers. Mater Sci Eng B 138:95–100

    Article  CAS  Google Scholar 

  16. Kerileng MM, Peter MN, Rachel FA, Gcineka M, Stephen MM, Njagi N, Milua M, Priscilla B, Emmanuel II (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875

    Google Scholar 

  17. Nobrega MM, Izumi CMS, Temperini MLA (2015) Probing molecular ordering in the HCl-doped polyaniline with bulk and nanofiber morphology by their thermal behavior. Polym Degrad Stab 113:66–71

    Article  CAS  Google Scholar 

  18. Jevremovic M, Zujovic Z, Stanisavljev D, Bowmaker G, Gizdavic-Nikolaidis M (2014) Investigation of the effect of acid dopant on the physical properties of polyaniline prepared using microwave irradiation. Curr Appl Phys 14:1201–1207

    Article  Google Scholar 

  19. Yang D, Lu W, Goering R, Mattes BR (2009) Investigation of polyaniline processibility using GPC/UV–vis analysis. Synth Met 159:666–674

    Article  CAS  Google Scholar 

  20. Monkman AP, Adams P (1991) Structural characterization of polyaniline free standing films. Synth Met 41–43:891–896

    Article  Google Scholar 

  21. Adams PN, Laughlin PJ, Monkman AP (1994) A further step towards stable organic metals oriented films of polyaniline with high electrical conductivity and anistrophy. Solid State Commun 91:875–878

    Article  CAS  Google Scholar 

  22. Mattoso LHC, MacDiarmid AG, Epstein AJ (1994) Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline). Synth Met 68:1–11

    Article  CAS  Google Scholar 

  23. Wan M, Liu L, Wang J (1998) Electrical and mechanical properties of polyaniline films - Effect of neutral salts added during polymerization. Chin J Polym Sci 16:1–8

    CAS  Google Scholar 

  24. Adams PN, Monkman AP (1997) Characterization of high molecular weight polyaniline synthesized at −40 C using a 0.25:1 mole ratio of persulfate oxidant to aniline. Synth Met 87:165–169

    Article  CAS  Google Scholar 

  25. Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2012) Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 5:1487–1494

    Article  CAS  Google Scholar 

  26. Razali NF, Mohammad AW, Hilal N (2014) Effects of polyaniline nanoparticles in polyethersulfone ultrafiltration membranes: fouling behaviours by different types of foulant. J Ind Eng Chem 20:3134–3140

    Article  CAS  Google Scholar 

  27. Huang X, McVerry BT, Marambio-Jones C, Wong MCY, Hoek EMV, Kaner RB (2015) Novel chlorine resistant low-fouling ultrafiltration membrane based on a hydrophilic polyaniline derivative. J Mater Chem A 3:8725–8733

    Article  CAS  Google Scholar 

  28. Guillen GR, Farrell TP, Kaner RB, Hoek EMV (2010) Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline-polysulfone ultrafiltration membranes. J Mater Chem 20:4621–4628

    Article  CAS  Google Scholar 

  29. Chapman P, Loh XX, Livingston AG, Li K, Oliveira TAC (2008) Polyaniline membranes for the dehydration of tetrahydrofuran by pervaporation. J Membr Sci 309:102–111

    Article  CAS  Google Scholar 

  30. See-Toh YH, Silva M, Livingston A (2008) Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes. J Membr Sci 324:220–232

    Article  CAS  Google Scholar 

  31. Hoek EMV, Kaner RB, Guillen GR, Farrell TP (2014) Polyaniline membranes, uses, and methods thereto. California Patent WO2014059339 A1, 2013

  32. Afzali A, Maghsoodlou S (2015) Acomprehensive review on computational methods. In: Klodzinska E (ed) Functional materials: properties, performance and evaluation, 1 edn. Apple Academic Press, Oakville, pp. 61–116

    Google Scholar 

  33. Sutherland KS, Chase G (2011) Filters and filtration handbook, 5 edn. Elsevier, Amsterdam

    Google Scholar 

  34. Lopez-Bonilla JL, Abdullin MI, Zaikov GE (2016) Physical chemistry for the chemical and biochemical sciences, 1 edn. CRC Press, Boca Raton

    Book  Google Scholar 

  35. Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Conjugated polymer films for gas separations. Science 252:1412–1415

    Article  CAS  Google Scholar 

  36. Kaner RB, Anderson MR, Mattes BR, Reiss H (1992) Membranes having selective permeability. California Patent WO1992003217 A1, 1991

  37. Blinova NV, Stejskal J, Fréchet JMJ, Svec F (2012) Effect of reaction conditions on film morphology of polyaniline composite membranes for gas separation. J Polym Sci A Polym Chem 50:3077–3085

    Article  CAS  Google Scholar 

  38. Sairam M, Loh XX, Li K, Bismarck A, Steinke JHG, Livingston AG (2009) Nanoporous asymmetric polyaniline films for filtration of organic solvents. J Membr Sci 330:166–174

    Article  CAS  Google Scholar 

  39. Alam J, Dass LA, Alhoshan MS, Ghasemi M, Mohammad AW (2011) Development of polyaniline-modified polysulfone nanocomposite membrane. Appl Water Sci 2:37–46

    Article  Google Scholar 

  40. Hopkins AR, Lipeles RA, Hwang S-J (2008) Morphology characterization of polyaniline nano- and microstructures. Synth Met 158:594–601

    Article  CAS  Google Scholar 

  41. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855

    Article  CAS  Google Scholar 

  42. Qiang J, Yu Z, Wu H, Yun D (2008) Polyaniline nanofibers synthesized by rapid mixing polymerization. Synth Met 158:544–547

    Article  CAS  Google Scholar 

  43. Yılmaz F, Küçükyavuz Z (2009) The influence of polymerization temperature on structure and properties of polyaniline. E-Polymers 9:48–57

    Google Scholar 

  44. Tsutsumi H, Fukuzawa S, Ishikawa M, Morita M, Matsuda Y (1995) Preparation of polyaniline-poly(p-styrenesulfonic acid) composite by the post-polymerization method. Synth Met 72:231–235

    Article  CAS  Google Scholar 

  45. Sengupta PP, Kar P, Adhikari B (2008) Effect of LiCl as an additive in the polymerization reaction of aniline and its influence on the structural and electrical property of polyaniline. React Funct Polym 68:1103–1112

    Article  CAS  Google Scholar 

  46. Adams PN, Laughlin PJ, Monkman AP (1996) Low temperature synthesis of high molecular weight polyaniline. Polymer 37:3411–3417

    Article  CAS  Google Scholar 

  47. Farrokhzad H, Darvishmanesh S, Genduso G, Van Gerven T, Van der Bruggen B (2015) Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline. Electrochim Acta 158:64–72

    Article  CAS  Google Scholar 

  48. Cao Y, Andreatta A, Heeger AJ, Smith P (1989) Influence of chemical polymerization conditions on the properties of polyaniline. Polymer 30:2305–2311

    Article  CAS  Google Scholar 

  49. Beadle PM, Nicolau YF, Banka E, Rannou P, Djurado D (1998) Controlled polymerization of aniline at sub-zero temperatures. Synth Met 95:29–45

    Article  CAS  Google Scholar 

  50. Bláha M, Varga M, Prokeš J, Zhigunov A, Vohlídal J (2013) Effects of the polymerization temperature on the structure, morphology and conductivity of polyaniline prepared with ammonium peroxodisulfate. Eur Polym J 49:3904–3911

    Article  Google Scholar 

  51. Sbaite P, Huerta-Vilca D, Barbero C, Miras MC, Motheo AJ (2004) Effect of electrolyte on the chemical polymerization of aniline. Eur Polym J 40:1445–1450

    Article  CAS  Google Scholar 

  52. Sanches EA, Soares JC, Mafud AC, Fernandes EGR, Leite FL, Mascarenhas YP (2013) Structural characterization of chloride salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM. J Mol Struct 1036:121–126

    Article  CAS  Google Scholar 

  53. Mahato N, Parveen N, Cho MH (2015) Synthesis of highly crystalline polyaniline nanoparticles by simple chemical route. Mater Lett 161:372–374

    Article  CAS  Google Scholar 

  54. Sanches EA, da Silva JMS, de O. Ferreira JM, JC S, dos Santos AL, Trovati G, Fernandes EGR, Mascarenhas YP (2014) Nanostructured Polyaniline Emeraldine-base form (EB-PANI): a structural investigation for different neutralization times. J Mol Struct 1074:732–737

    Article  CAS  Google Scholar 

  55. Jing X, Wang Y, Wu D, Qiang J (2007) Sonochemical synthesis of polyaniline nanofibers. Ultrason Sonochem 14:75–80

    Article  CAS  Google Scholar 

  56. Mara JRC, Martha FSL, Denise ML (2007) Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater Res 10:425–429

    Google Scholar 

  57. Luo K, Shi N, Sun C (2006) Thermal transition of electrochemically synthesized polyaniline. Polym Degrad Stab 91:2660–2664

    Article  CAS  Google Scholar 

  58. Akbari A, Yegani R (2012) Study on the impact of polymer concentration and coagulation bath temperature on the porosity of polyethylene membranes fabricated via TIPS method. J Memb Separ Tech 1:100–107

    CAS  Google Scholar 

  59. Pesek SC, Koros WJ (1994) Aqueous quenched asymmetric polysulfone hollow fibers prepared by dry/wet phase separation. J Membr Sci 88:1–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Fundamental Research Grant Scheme (FRGS/2/2013/TK05/UKM/02/4), GGPM-074-2013(UKM), Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia and MyMaster by MOSTI for the MSc scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiah Rohani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusoff, I.I., Rohani, R. & Mohammad, A.W. Investigation of the formation characteristics of polyaniline and its application in forming free-standing pressure filtration membranes. J Polym Res 23, 177 (2016). https://doi.org/10.1007/s10965-016-1068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1068-4

Keywords

Navigation