Skip to main content
Log in

High-Performance Ultrafiltration Membrane: Recent Progress and Its Application for Wastewater Treatment

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review presents an overview of high-performance ultrafiltration (UF) membranes, including fouling resistant, micellar-enhanced, tight, adsorptive, and catalytic UF. The review discusses recent advances in the development of these membranes, focusing on their preparation method, performances, and applications. Then, the review concludes with a discussion of the challenges and future outlooks of these UF membranes in wastewater treatment.

Recent Findings

Recently, the development of UF membranes has resulted in membranes with high performances in wastewater treatment. For instance, fouling-resistant membranes synthesized through surface modification show significant improvement in terms of fouling reduction and flux recovery. In addition, coupling with complexation reaction, tightening membrane pore structure, endowing membrane with adsorption ability, and functionalizing UF membrane with catalytic properties, greatly improve the performance of UF in removing pollutants. Highly selective UF membranes can achieve remarkable various pollutant removals (e.g., organic compounds and heavy metals) from wastewater.

Summary

UF membrane has been widely applied in wastewater treatment due to its low-pressure operation, relatively low energy consumption, high product quality, and simple operation. Significant efforts have been dedicated to improve UF membrane performance. Fouling resistant and highly selective UF membranes have been developed successfully, which showed remarkable performance in various pollutant removals. These high-performance UF membranes provide the possibility of process simplification in wastewater treatment since they can remove a more wide range of pollutant types, and thus post-treatment step may be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drioli E, Ali A, Macedonio F. Membrane operations for process intensification in desalination. Appl Sci. 2017;1–14.

  2. Wenten IG, Khoiruddin K, Aryanti PTP, Hakim AN. Scale-up strategies for membrane-based desalination processes: a review. J Membr Sci Res. 2016;2:42–58.

    Google Scholar 

  3. Wenten IG, Friatnasary DL, Khoiruddin K, Setiadi T, Boopathy R. Extractive membrane bioreactor (EMBR): Recent advances and applications. Bioresour Technol. 2020;297:122424.

  4. Gao Y, Qin J, Wang Z, Østerhus SW. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. J Memb Sci. 2019;587:117136.

  5. Agi A, Junin R, Alqatta AYM, Gbadamosi A, Yahya A, Abbas A. Ultrasonic assisted ultrafiltration process for emulsification of oil field produced water treatment. Ultrason Sonochem. 2019;51:214–22.

    Article  CAS  Google Scholar 

  6. Aryanti PTP, Subagjo S, Ariono D, Wenten IG. Fouling and rejection characteristic of humic substances in polysulfone ultrafiltration membrane. J Membr Sci Res. 2015;1:41–5.

    Google Scholar 

  7. Ariono D, Wardani AK, Widodo S, Aryanti PTP, Wenten IG. Fouling mechanism in ultrafiltration of vegetable oil. Mater Res Express. 2018;5:34009.

    Article  Google Scholar 

  8. Gao F, Wang J, Zhang H, Jia H, Cui Z, Yang G. Role of ionic strength on protein fouling during ultrafiltration by synchronized UV–vis spectroscopy and electrochemical impedance spectroscopy. J Memb Sci. 2018;563:592–601.

    Article  CAS  Google Scholar 

  9. Yu H, Li X, Chang H, Zhou Z, Zhang T, Yang Y, et al. Performance of hollow fiber ultrafiltration membrane in a full-scale drinking water treatment plant in China: a systematic evaluation during 7-year operation. J Memb Sci. 2020;613:118469.

  10. Arhin SG, Banadda N, Komakech AJ, Pronk W, Marks SJ. Application of hybrid coagulation–ultrafiltration for decentralized drinking water treatment: impact on flux, water quality and costs. Water Supply. 2019;19:2163–71.

    Article  Google Scholar 

  11. Reiller P, Lemordant D, Hafiane A, Moulin C, Beaucaire C. Extraction and release of metal ions by micellar-enhanced ultrafiltration: influence of complexation and pH. J Colloid Interface Sci. 1996;177:519–27.

    Article  CAS  Google Scholar 

  12. Li C-W, Liu C-K, Yen W-S. Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions. Chemosphere. 2006;63:353–8.

    Article  CAS  Google Scholar 

  13. Huang X, Tian C, Qin H, Guo W, Gao P, Xiao H. Preparation and characterization of Al3+-doped TiO2 tight ultrafiltration membrane for efficient dye removal. Ceram Int. 2020;46:4679–89.

    Article  CAS  Google Scholar 

  14. Desa AL, Hairom NHH, Sidik DAB, Zainuri NZ, Ng LY, Mohammad AW, et al. Performance of tight ultrafiltration membrane in textile wastewater treatment via MPR system: Effect of pressure on membrane fouling. IOP Conf Ser Mater Sci Eng. 2020.

  15. Mansor ES, Ali EA, Shaban AM. Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment. Chem Eng J. 2021;407.

  16. Yoo H, Kwak S-Y. Surface functionalization of PTFE membranes with hyperbranched poly(amidoamine) for the removal of Cu2+ ions from aqueous solution. J Memb Sci. 2013;448:125–34.

    Article  CAS  Google Scholar 

  17. Abdullah N, Gohari RJ, Yusof N, Ismail AF, Juhana J, Lau WJ, et al. Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: preparation, characterization and its adsorptive removal of lead (II) from aqueous solution. Chem Eng J. 2016;289:28–37.

    Article  CAS  Google Scholar 

  18. Zhou A, Jia R, Wang Y, Sun S, Xin X, Wang M, et al. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep Purif Technol. 2020;234:116099.

  19. Huang Z-H, Zhang X, Wang Y-X, Sun J-Y, Zhang H, Liu W-L, et al. Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling. Environ Res. 2020;187:109617.

  20. Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Jafari rad A, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J Hazard Mater. 2019;368:10–20.

  21. Koushkbaghi S, Jafari P, Rabiei J, Irani M, Aliabadi M. Fabrication of PET/PAN/GO/Fe3O4 nanofibrous membrane for the removal of Pb(II) and Cr(VI) ions. Chem Eng J. 2016;301:42–50.

    Article  CAS  Google Scholar 

  22. Zhang Y, Fu Q. Algal fouling of microfiltration and ultrafiltration membranes and control strategies: a review. Sep Purif Technol. 2018;203:193–208.

    Article  CAS  Google Scholar 

  23. Xu H, Xiao K, Wang X, Liang S, Wei C, Wen X, et al. Outlining the roles of membrane-foulant and foulant-foulant interactions in organic fouling during microfiltration and ultrafiltration: a mini-review. Front. Chem. 2020;417.

  24. Afonso MD, Bórquez R. Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes - prospects of the ultrafiltration of wastewaters from the fish meal industry. Desalination. 2002;142:29–45.

    Article  CAS  Google Scholar 

  25. Ahmad T, Guria C, Mandal A. A review of oily wastewater treatment using ultrafiltration membrane: a parametric study to enhance the membrane performance. J Water Process Eng. 2020;36.

  26. Ratnaningsih E, Reynard R, Khoiruddin K, Wenten IG, Boopathy R. Recent advancements of UF-based separation for selective enrichment of proteins and bioactive peptides—a review. Appl Sci. 2021;1078.

  27. Schwarze M. Micellar-enhanced ultrafiltration (MEUF)-state of the art. Environ Sci Water Res Technol. 2017;3:598–624.

    Article  Google Scholar 

  28. Zhang X, Xu Z, Wang L, Wang X, Zeng Y, Zhang G. Graphene-based ultrafiltration membranes for separation: Synthesis and applications. Recent Patents Eng. 2018;12:37–45.

    Article  CAS  Google Scholar 

  29. Cassano A, Conidi C, Ruby-Figueroa R, Castro-Muñoz R. Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int J Mol Sci. 2018.

  30. Ren Y, Ma Y, Min G, Zhang W, Lv L, Zhang W. A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: Additional functions of adsorption and catalytic oxidation. Sci Total Environ. 2021;762.

  31. Goosen MFA, Sablani SS, Al-Hinai H, Al-Obeidani S, Al-Belushi R, Jackson D. Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep Sci Technol. 2005;39:2261–97.

    Article  Google Scholar 

  32. Ma B, Wu G, Li W, Miao R, Li X, Wang P. Roles of membrane–foulant and inter/intrafoulant species interaction forces in combined fouling of an ultrafiltration membrane. Sci Total Environ. 2019;652:19–26.

    Article  Google Scholar 

  33. Harouna BM, Benkortbi O, Hamadache M, Hanini S, Amrane A. New approach of the fouling process modeling in tangential filtration on cake. Desalin Water Treat. 2017;74:71–86.

    Article  CAS  Google Scholar 

  34. Yang F, Huang Z, Huang J, Wu C, Zhou R, Jin Y. Tanning Wastewater treatment by ultrafiltration: process efficiency and fouling behavior. Membranes (Basel). 2021;11:1–17.

    Google Scholar 

  35. Wen-qiong W, Yun-chao W, Xiao-feng Z, Rui-xia G, Mao-lin L. Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chem. 2019;289:468–81.

    Article  Google Scholar 

  36. Kochkodan VM, Sharma VK. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: A review. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. 2012;47:1713–27.

    CAS  Google Scholar 

  37. Zhao X, Chen W, Su Y, Zhu W, Peng J, Jiang Z, et al. Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties. J Memb Sci Elsevier. 2013;441:93–101.

    Article  CAS  Google Scholar 

  38. Yasuda H, Wang CR. Plasma polymerization investigated by the substrate temperature dependence. J Polym Sci Polym Chem Ed. John Wiley & Sons, Ltd; 1985;23:87–106.

  39. Yu H-Y, He X-C, Liu L-Q, Gu J-S, Wei X-W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment. Water Res Elsevier. 2007;41:4703–9.

    Article  CAS  Google Scholar 

  40. Yu H-Y, Liu L-Q, Tang Z-Q, Yan M-G, Gu J-S, Wei X-W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: Air plasma treatment. J Memb Sci. 2008;311:216–24.

    Article  CAS  Google Scholar 

  41. Liston EM. Plasma treatment for improved bonding: a review. J Adhes. 1989;30:199–218.

    Article  CAS  Google Scholar 

  42. Dorai R, Kushner MJ. A model for plasma modification of polypropylene using atmospheric pressure discharges. J Phys D Appl Phys. 2003;36:666–85.

    Article  CAS  Google Scholar 

  43. Boyd RD, Kenwright AM, Badyal JPS, Briggs D. Atmospheric nonequilibrium plasma treatment of biaxially oriented polypropylene. Macromolecules. 1997;30:5429–36.

    Article  CAS  Google Scholar 

  44. Zou L, Vidalis I, Steele D, Michelmore A, Low SP, Verberk JQJC. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. J Memb Sci. 2011;369:420–8.

    Article  CAS  Google Scholar 

  45. Yan M-G, Liu L-Q, Tang Z-Q, Huang L, Li W, Zhou J, et al. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chem Eng J. 2008;145:218–24.

    Article  CAS  Google Scholar 

  46. Liu Z-M, Xu Z-K, Wang J-Q, Wu J, Fu J-J. Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. Eur Polym J. 2004;40:2077–87.

    Article  CAS  Google Scholar 

  47. Jin J, Zhang C, Jiang W, Luan S, Yang H, Yin J, et al. Melting grafting polypropylene with hydrophilic monomers for improving hemocompatibility. Colloids Surfaces A Physicochem Eng Asp. 2012;407:141–9.

    Article  CAS  Google Scholar 

  48. Liu G, Zhang L, Mao S, Rohani S, Ching C, Lu J. Zwitterionic chitosan-silica-PVA hybrid ultrafiltration membranes for protein separation. Sep Purif Technol. 2015;152:55–63.

    Article  CAS  Google Scholar 

  49. Liu Y, Huang H, Huo P, Gu J. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation. Carbohydr Polym. 2017;165:266–75.

    Article  CAS  Google Scholar 

  50. Nayak V, Geetha Balakrishna R, Padaki M, Soontarapa K. Zwitterionic ultrafiltration membranes for As (V) rejection. Chem Eng J. 2017;308:347–58.

    Article  CAS  Google Scholar 

  51. Huang H, Yu J, Guo H, Shen Y, Yang F, Wang H, et al. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide. Appl Surf Sci. 2018;427:38–47.

    Article  CAS  Google Scholar 

  52. Wang L, Su Y, Zheng L, Chen W, Jiang Z. Highly efficient antifouling ultrafiltration membranes incorporating zwitterionic poly([3-(methacryloylamino)propyl]-dimethyl(3-sulfopropyl) ammonium hydroxide). J Memb Sci. 2009;340:164–70.

    Article  CAS  Google Scholar 

  53. Su Y, Li C. Controlled adsorption of bovine serum albumin on poly(acrylonitrile)-based zwitterionic membranes. React Funct Polym. 2008;68:161–8.

    Article  CAS  Google Scholar 

  54. Sun Q, Su Y, Ma X, Wang Y, Jiang Z. Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. J Memb Sci. 2006;285:299–305.

    Article  CAS  Google Scholar 

  55. Yi Z, Zhu L-P, Zhang H, Zhu B-K, Xu Y-Y. Ionic liquids as co-solvents for zwitterionic copolymers and the preparation of poly(vinylidene fluoride) blend membranes with dominated β-phase crystals. Polymer (Guildf). 2014;55:2688–96.

    Article  CAS  Google Scholar 

  56. Shi Q, Su Y, Zhao W, Li C, Hu Y, Jiang Z, et al. Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. J Memb Sci. 2008;319:271–8.

    Article  CAS  Google Scholar 

  57. Liu P-S, Chen Q, Wu S-S, Shen J, Lin S-C. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Memb Sci. 2010;350:387–94.

    Article  CAS  Google Scholar 

  58. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res. 1998;39:323–30.

    Article  CAS  Google Scholar 

  59. Lowe AB, McCormick CL. Synthesis and solution properties of zwitterionic polymers. Chem Rev. 2002;102:4177–90.

    Article  CAS  Google Scholar 

  60. Huang Y-C, Koseoglu SS. Separation of heavy metals from industrial waste streams by membrane separation technology. Waste Manag. 1993;13:481–501.

    Article  CAS  Google Scholar 

  61. Wenten IG, Khoiruddin K, Wardani AK, Widiasa IN. Synthetic polymer-based membranes for heavy metal removal. In: Ismail AF, Salleh WNW, Yusof N, editors. Synth Polym Membr Adv Water Treat Gas Sep Energy Sustain. Elsevier; 2020. p. 71–101.

    Google Scholar 

  62. Mungray AA, Kulkarni SV, Mungray AK. Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review. Cent Eur J Chem. 2012;10:27–46.

    CAS  Google Scholar 

  63. Xu K, Zeng G-m, Huang J-h, Wu J-y, Fang Y-y, Huang G, et al. Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids Surfaces A Physicochem Eng Asp. 2007;294:140–6.

  64. Chaudhari RR, Marathe KV. Separation of dissolved phenolics from aqueous waste stream using micellar enhanced ultrafiltration. Sep Sci Technol. 2010;45:1033–41.

    Article  CAS  Google Scholar 

  65. Kim H, Baek K, Lee J, Iqbal J, Yang J-W. Comparison of separation methods of heavy metal from surfactant micellar solutions for the recovery of surfactant. Desalination. 2006;191:186–92.

    Article  CAS  Google Scholar 

  66. Li X, Zeng G-M, Huang J-H, Zhang C, Fang Y-Y, Qu Y-H, et al. Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration. J Memb Sci. 2009;337:92–7.

    Article  CAS  Google Scholar 

  67. Wu B, Christian SD, Scamehorn JF. Recovery of surfactant from micellar-enhanced ultrafiltration using a precipitation process. In: Lagaly G, editor. Horizons 2000 – Asp colloid interface Sci turn millenium. Darmstadt: Steinkopff; 1998. p. 60–73.

    Chapter  Google Scholar 

  68. Iqbal J, Kim H-J, Yang J-S, Baek K, Yang J-W. Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere. 2007;66:970–6.

    Article  CAS  Google Scholar 

  69. Dorra EJ, Mourad BS, Mahmoud D. Retention of cadmium and zinc from aqueous solutions by poly(acrylic acid)-assisted ultrafiltration. Int J Chem React Eng. 2010;8.

  70. Yurlova L, Kryvoruchko A, Kornilovich B. Removal of Ni(II) ions from wastewater by micellar-enhanced ultrafiltration. Desalination. 2002;144:255–60.

    Article  CAS  Google Scholar 

  71. Wang T-Z, Mao S-Z, Miao X-J, Zhao S, Yu J-Y, Du Y-R. 1H NMR study of mixed micellization of sodium dodecyl sulfate and triton X-100. J Colloid Interface Sci. 2001;241:465–8.

    Article  CAS  Google Scholar 

  72. Sadaoui Z, Hemidouche S, Allalou O. Removal of hexavalent chromium from aqueous solutions by micellar compounds. Desalination. 2009;249:768–73.

    Article  CAS  Google Scholar 

  73. Lin S-H, Juang R-S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater. 2002;92:315–26.

    Article  CAS  Google Scholar 

  74. Rahmanian B, Pakizeh M, Esfandyari M, Heshmatnezhad F, Maskooki A. Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF). J Hazard Mater. 2011;192:585–92.

    Article  CAS  Google Scholar 

  75. Yenphan P, Chanachai A, Jiraratananon R. Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination. 2010;253:30–7.

    Article  CAS  Google Scholar 

  76. Gzara L, Dhahbi M. Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination. 2001;137:241–50.

    Article  CAS  Google Scholar 

  77. Baek K, Yang T-W. Competitive bind of anionic metals with cetylpyridinium chloride micelle in micellar-enhanced ultrafiltration. Desalination. 2004;167:101–10.

    Article  CAS  Google Scholar 

  78. Landaburu-Aguirre J, Pongrácz E, Keiski RL. Separation of cadmium and copper from phosphorous rich synthetic waters by micellar-enhanced ultrafiltration. Sep Purif Technol. 2011;81:41–8.

    Article  CAS  Google Scholar 

  79. Landaburu-Aguirre J, García V, Pongrácz E, Keiski RL. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination. 2009;240:262–9.

    Article  CAS  Google Scholar 

  80. Li X, Zeng G-M, Huang J-H, Zhang D-M, Shi L-J, He S-B, et al. Simultaneous removal of cadmium ions and phenol with MEUF using SDS and mixed surfactants. Desalination. 2011;276:136–41.

    Article  CAS  Google Scholar 

  81. Beolchini F, Pagnanelli F, De Michelis I, Vegliò F. Micellar enhanced ultrafiltration for arsenic(V) removal: effect of main operating conditions and dynamic modelling. Environ Sci Technol. 2006;40:2746–52.

    Article  CAS  Google Scholar 

  82. Aryanti PTP, Hakim AN, Widodo S, Widiasa IN, Wenten IG. Prospect and challenges of tight ultrafiltration membrane in drinking water treatment. IOP Conf Ser Mater Sci Eng. 2018.

  83. Lin J, Lin F, Chen X, Ye W, Li X, Zeng H, et al. Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind Eng Chem Res. 2019;58:11003–12.

    Article  CAS  Google Scholar 

  84. Han G, Feng Y, Chung T-S, Weber M, Maletzko C. Phase inversion directly induced tight ultrafiltration (UF) hollow fiber membranes for effective removal of textile dyes. Environ Sci Technol American Chemical Society. 2017;51:14254–61.

    Article  CAS  Google Scholar 

  85. Fang S, Shi X, Wang X, Zhang Z, Yin C, Zhang Z, et al. Large-pore covalent organic frameworks for ultra-fast tight ultrafiltration (TUF). J Memb Sci. 2021;637:119635.

  86. Johari NA, Yusof N, Lau WJ, Abdullah N, Salleh WNW, Jaafar J, et al. Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment. Sep Purif Technol. 2021;270.

  87. Zahid M, Ahmad H, Drioli E, Rehan ZA, Rashid A, Akram S, et al. Chapter 5 - Role of polymeric nanocomposite membranes for the removal of textile dyes from wastewater. In: Abd-Elsalam KA, Zahid MBT-A, editors. Micro Nano Technol. Elsevier 2021;91–103.

  88. Ma L, Svec F, Lv Y, Tan T. Engineering of the filler/polymer interface in metal–organic framework-based mixed-matrix membranes to enhance gas separation. Chem – An Asian J. John Wiley & Sons, Ltd; 2019;14:3502–14.

  89. Kandambeth S, Dey K, Banerjee R. Covalent organic frameworks: chemistry beyond the structure. J Am Chem Soc. 2019;141:1807–22.

  90. Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Covalent organic frameworks for separation applications. Chem Soc Rev. 2020;49:708–35.

  91. Hu M, Yang S, Liu X, Tao R, Cui Z, Matindi C, et al. Selective separation of dye and salt by PES/SPSf tight ultrafiltration membrane: roles of size sieving and charge effect. Sep Purif Technol. 2021;266.

  92. Ding J, Pu L, Zou D, Cao M, Shan C, Zhang Q, et al. Removal of model dyes on charged UF membranes: experiment and simulation. Chemosphere. 2020;240:124940.

  93. Zhou D, Rong G, Huang S, Pang J. Preparation of a novel sulfonated polyphenlene sulfone with flexible side chain for ultrafiltration membrane application. Sep Purif Technol. 2019;210:817–23.

    Article  CAS  Google Scholar 

  94. Datz S, Illes B, Gößl D, Schirnding C v., Engelke H, Bein T. Biocompatible crosslinked β-cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale. 2018;10:16284–92.

  95. Tesha JM, Dlamini DS, Qaseem S, Cui Z, Li J. Tight ultrafiltration: layer deposition of Trimesoyl chloride/β- cyclodextrin onto polysulfone/poly (styrene-co-maleic anhydride) membrane for water treatment. J Environ Chem Eng. 2020;8.

  96. Tian H, Wu X, Zhang K. Polydopamine-assisted two-dimensional molybdenum disulfide (MoS2)-modified PES tight ultrafiltration mixed-matrix membranes: enhanced dye separation performance. Membranes (Basel). 2021;11.

  97. Ibrahim GPS, Isloor AM, Ismail AF, Farnood R. One-step synthesis of zwitterionic graphene oxide nanohybrid: application to polysulfone tight ultrafiltration hollow fiber membrane. Sci Rep. 2020;10.

  98. Yan Q, Sun J, Xue Y, Zhao G, Liu T, Liu X, et al. High-performance CrN tight ultrafiltration membranes prepared by in situ gas–solid catalytic reaction. Mater Des. 2021;204.

  99. Wen J, Yang C, Chen X, Qiu M, Fan Y. Effective and efficient fabrication of high-flux tight ZrO2 ultrafiltration membranes using a nanocrystalline precursor. J Memb Sci. 2021;634.

  100. Qin H, Guo W, Gao P, Xiao H. Customization of ZrO2 loose/tight bilayer ultrafiltration membranes by reverse micelles-mediated aqueous sol-gel process for wastewater treatment. J Eur Ceram Soc. 2021;41:2724–33.

    Article  CAS  Google Scholar 

  101. Ma X, Chen P, Zhou M, Zhong Z, Zhang F, Xing W. Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment. Ind Eng Chem Res. 2017;56:7070–9.

    Article  CAS  Google Scholar 

  102. Kotte MR, Kuvarega AT, Cho M, Mamba BB, Diallo MS. Mixed matrix PVDF membranes with in situ synthesized PAMAM dendrimer-like particles: a new class of sorbents for Cu(II) recovery from aqueous solutions by ultrafiltration. Environ Sci Technol. 2015;49:9431–42.

    Article  CAS  Google Scholar 

  103. Zeng G, He Y, Yu Z, Yang X, Yang R, Zhang L. Preparation of novel high copper ions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube. J Chem Technol Biotechnol. 2016;91:2322–30.

    Article  CAS  Google Scholar 

  104. Kumar M, Shevate R, Hilke R, Peinemann K-V. Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal. Chem Eng J. 2016;301:306–14.

    Article  CAS  Google Scholar 

  105. Zhang Y, Liu F, Ji C, Yuan R, Wu H, Li A. TAP/GMA@CN metal-chelating membrane for enhanced and efficient capture of Cu(II). J Memb Sci. 2019;570–571:362–70.

    Article  Google Scholar 

  106. Pan S, Li J, Noonan O, Fang X, Wan G, Yu C, et al. Dual-functional ultrafiltration membrane for simultaneous removal of multiple pollutants with high performance. Environ Sci Technol. 2017;51:5098–107.

    Article  CAS  Google Scholar 

  107. Fang X, Li J, Li X, Pan S, Zhang X, Sun X, et al. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem Eng J. 2017;314:38–49.

    Article  CAS  Google Scholar 

  108. Farid MU, Luan H-Y, Wang Y, Huang H, An AK, Jalil KR. Increased adsorption of aqueous zinc species by Ar/O2 plasma-treated carbon nanotubes immobilized in hollow-fiber ultrafiltration membrane. Chem Eng J. 2017;325:239–48.

    Article  Google Scholar 

  109. Cetinkaya AY. Performance and mechanism of direct As(III) removal from aqueous solution using low-pressure graphene oxide-coated membrane. Chem Pap. 2018;72:2363–73.

    Article  CAS  Google Scholar 

  110. Li T, Zhang W, Zhai S, Gao G, Ding J, Zhang W, et al. Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Res. 2018;143:87–98.

    Article  CAS  Google Scholar 

  111. Rana D, Narbaitz RM, Garand-Sheridan A-M, Westgate A, Matsuura T, Tabe S, et al. Development of novel charged surface modifying macromolecule blended PES membranes to remove EDCs and PPCPs from drinking water sources. J Mater Chem A. 2014;2:10059–72.

    Article  CAS  Google Scholar 

  112. Thuyavan YL, Anantharaman N, Arthanareeswaran G, Ismail AF. Adsorptive removal of humic acid by zirconia embedded in a poly(ether sulfone) membrane. Ind Eng Chem Res. 2014;53:11355–64.

    Article  CAS  Google Scholar 

  113. Mukherjee R, De S. Novel carbon-nanoparticle polysulfone hollow fiber mixed matrix ultrafiltration membrane: Adsorptive removal of benzene, phenol and toluene from aqueous solution. Sep Purif Technol. 2016;157:229–40.

    Article  CAS  Google Scholar 

  114. Capozzi LC, Mehmood FM, Giagnorio M, Tiraferri A, Cerruti M, Sangermano M. Ultrafiltration membranes functionalized with polydopamine with enhanced contaminant removal by adsorption. Macromol Mater Eng. 2017;302:1600481.

    Article  Google Scholar 

  115. Wang Z, Xu L, Qi C, Zhao C. Fabrication of MWCNTs-polysulfone composite membranes and its application in the removal of bisphenol A. Mater Res Express. IOP Publishing; 2018;5:65101.

  116. Chen L, Liu F, Wu Y, Zhao L, Li Y, Zhang X, et al. In situ formation of La(OH)3-poly(vinylidene fluoride) composite filtration membrane with superior phosphate removal properties. Chem Eng J. 2018;347:695–702.

    Article  CAS  Google Scholar 

  117. Zainol Abidin MN, Goh PS, Ismail AF, Said N, Othman MHD, Hasbullah H, et al. Polysulfone/iron oxide nanoparticles ultrafltration membrane for adsorptive removal of phosphate from aqueous solution. J Membr Sci Res. 2019;5:20–4.

    Google Scholar 

  118. Lukka Thuyavan Y, Arthanareeswaran G, Ismail AF, Goh PS, Shankar MV, Lakshmana RN. Treatment of synthetic textile dye effluent using hybrid adsorptive ultrafiltration mixed matrix membranes. Chem Eng Res Des. 2020;159:92–104.

    Article  CAS  Google Scholar 

  119. Mondal S, Majumder SK. Fabrication of the polysulfone-based composite ultrafiltration membranes for the adsorptive removal of heavy metal ions from their contaminated aqueous solutions. Chem Eng J. 2020;401.

  120. Pagana AE, Sklari SD, Kikkinides ES, Zaspalis VT. Combined adsorption–permeation membrane process for the removal of chromium (III) ions from contaminated water. J Memb Sci. 2011;367:319–24.

    Article  CAS  Google Scholar 

  121. Wang X, Zhou K, Ma Z, Lu X, Wang L, Wang Z, et al. Preparation and characterization of novel polyvinylidene fluoride/2-aminobenzothiazole modified ultrafiltration membrane for the removal of Cr(VI) in wastewater. Polymers (Basel). 2018;1–10.

  122. Zhang L-P, Liu Z, Faraj Y, Zhao Y, Zhuang R, Xie R, et al. High-flux efficient catalytic membranes incorporated with iron-based Fenton-like catalysts for degradation of organic pollutants. J Memb Sci. 2019;573:493–503.

    Article  CAS  Google Scholar 

  123. Chen F, Shi X, Chen X, Chen W. An iron (II) phthalocyanine/poly (vinylidene fluoride) composite membrane with antifouling property and catalytic self-cleaning function for high-efficiency oil/water separation. J Memb Sci Elsevier. 2018;552:295–304.

    Article  CAS  Google Scholar 

  124. Wang J, Wu Z, Li T, Ye J, Shen L, She Z, et al. Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution. Chem Eng J. 2018;334:579–86.

    Article  CAS  Google Scholar 

  125. Fang X, Li J, Ren B, Huang Y, Wang D, Liao Z, et al. Polymeric ultrafiltration membrane with in situ formed nano-silver within the inner pores for simultaneous separation and catalysis. J Memb Sci. 2019;579:190–8.

    Article  CAS  Google Scholar 

  126. Gao Q, Wang C-Z, Liu S, Hanigan D, Liu S-T, Zhao H-Z. Ultrafiltration membrane microreactor (MMR) for simultaneous removal of nitrate and phosphate from water. Chem Eng J. 2019;355:238–46.

    Article  CAS  Google Scholar 

  127. Sun M, Zucker I, Davenport DM, Zhou X, Qu J, Elimelech M. Reactive, self-cleaning ultrafiltration membrane functionalized with iron oxychloride nanocatalysts. Environ Sci Technol. 2018;52:8674–83.

    Article  CAS  Google Scholar 

  128. Wang M, Xu Z, Hou Y, Li P, Sun H, Niu QJ. Photo-Fenton assisted self-cleaning hybrid ultrafiltration membranes with high-efficient flux recovery for wastewater remediation. Sep Purif Technol. 2020;249.

  129. Luo J, Chen W, Song H, Liu J. Fabrication of hierarchical layer-by-layer membrane as the photocatalytic degradation of foulants and effective mitigation of membrane fouling for wastewater treatment. Sci Total Environ. 2020;699:134398.

  130. Zhang S, Gutierrez L, Qi F, Croue J-P. SO4–-based catalytic ceramic UF membrane for organics removal and flux restoration. Chem Eng J. 2020;398:125600.

  131. Sianipar M, Kim SH, Khoiruddin, Iskandar F, Wenten IG. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 2017;7:51175–98.

  132. Yang C, Wang P, Li J, Wang Q, Xu P, You S, et al. Photocatalytic PVDF ultrafiltration membrane blended with visible-light responsive Fe(III)-TiO2 catalyst: Degradation kinetics, catalytic performance and reusability. Chem Eng J. 2021;417:129340.

  133. Liu W, Zhang Y, Zhang L, Guo J, Wei J. Polysulfone ultrafiltration membrane promoted by brownmillerite SrCuxCo1- xO3-λ-deposited MCM-41 for industrial wastewater decontamination: catalytic oxidation and antifouling properties. Ind Eng Chem Res. 2020;59:7805–15.

    Article  CAS  Google Scholar 

  134. Aryanti PTP, Sianipar M, Zunita M, Wenten IG. Modified membrane with antibacterial properties. Membr Water Treat. 2017;8:463–81.

    Google Scholar 

  135. Wenten IG, Khoiruddin K, Wardani AK, Aryanti PTP, Astuti DI, Komaladewi AAIAS. Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method for peat water treatment. J Water Process Eng. 2020;34:101158.

  136. Khoiruddin K, Ariono D, Subagjo S, Wenten IG. Improved anti-organic fouling of polyvinyl chloride-based heterogeneous anion-exchange membrane modified by hydrophilic additives. J Water Process Eng. 2021;41:102007.

  137. Ren Y, Li T, Zhang W, Wang S, Shi M, Shan C, et al. MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. J Hazard Mater. 2019;365:312–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Gede Wenten.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siagian, U.W.R., Khoiruddin, K., Wardani, A.K. et al. High-Performance Ultrafiltration Membrane: Recent Progress and Its Application for Wastewater Treatment. Curr Pollution Rep 7, 448–462 (2021). https://doi.org/10.1007/s40726-021-00204-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00204-5

Keywords

Navigation