Skip to main content
Log in

Theoretical and experimental studies on EMI shielding mechanisms of multi-walled carbon nanotubes reinforced high performance composite nanofibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrically conductive composite nanofibers of polyvinylpyrrolidone (PVP) filled with multi-walled carbon nanotubes (MWCNTs) were prepared by electrospinning process. The complex permittivity and electromagnetic interference shielding effectiveness (EMI SE) of all composite nanofibers were measured in the X band frequency range 8.2–12.4 GHz. The electrical conductivity, real and imaginary part of permittivity, and EMI shielding behaviors of the composite nanofibers were reported as function of MWCNTs concentration. Electrical conductivity of MWCNTs/PVP composite nanofiber followed power law model of percolation theory having a percolation threshold ϕc = 0.72 vol% (~1 wt.%) and exponent t = 1.71. The total EMI SE of MWCNTs/PVP composite nanofibers increased up to 42 dB mainly base on the absorption mechanism. The EMI SE measured from experiments was also compared with the approximate value calculated from theoretical model. The obtained theory results confirmed that the selected model presented acceptable performance for evaluating the involved parameters and prediction of the EMI SE of composite nanofibers. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the frequency, thickness, permittivity, and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yun J, Im JS, Lee YS, Kim H (2010) Eur Polym J 46:900

    Article  CAS  Google Scholar 

  2. Basuli U, Chattopadhyay S, Nah C, Chaki TK (2012) Polym Compos 33:897

    Article  CAS  Google Scholar 

  3. Chen X, Liu J, Zhang Z, Pan F (2012) Mater Des 42:327

    Article  CAS  Google Scholar 

  4. Gupta A, Choudhary V (2011) Compos Sci Technol 71:1563

    Article  CAS  Google Scholar 

  5. Gupta A, Choudhary V (2011) J Mater Sci 46:6416

    Article  CAS  Google Scholar 

  6. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Mater Chem Phys 113:919

    Article  CAS  Google Scholar 

  7. Nayak L, Khastgir D, Chaki TK (2013) J Mater Sci 48:1492

    Article  CAS  Google Scholar 

  8. Mohanty AK, Ghosh A, Sawai P, Pareek K, Banerjee S, Das A, Potschke P, Heinrich G, Voit B (2014) Polym Eng Sci 54:2560

    Article  CAS  Google Scholar 

  9. Roh JS, Chi YS, Kang TJ, Nam SW (2008) Text Res J 78:825

    Article  CAS  Google Scholar 

  10. Salimbeygi G, Nasouri K, Shoushtari AM (2014) Fibers Polym 15:583

    Article  CAS  Google Scholar 

  11. Saleh MH, Sundararaj U (2009) Carbon 47:1738

    Article  Google Scholar 

  12. Kim HR, Fujimori K, Kim BS, Kim IS (2012) Compos Sci Technol 72:1233

    Article  CAS  Google Scholar 

  13. Klemperer CJV, Maharaj D (2009) Compos Struct 91:467

    Article  Google Scholar 

  14. Im JS, Kim JG, Lee YS (2009) Carbon 47:2640

    Article  CAS  Google Scholar 

  15. Rahaman M, Chaki TK, Khastgir D (2011) J Mater Sci 46:3989

    Article  CAS  Google Scholar 

  16. Saleh MH, Sundararaj U (2013) J Phys D Appl Phys 46:035304

    Article  Google Scholar 

  17. Yuan B, Yu L, Sheng L, An K, Zhao X (2012) J Phys D Appl Phys 45:235108

    Article  Google Scholar 

  18. Saleh MH, Gelves GA, Sundararaj U (2013) Mater Des 52:128

    Article  Google Scholar 

  19. Nasouri K, Shoushtari AM, Kaflou A, Bahrambeygi H, Rabbi A (2012) Polym Compos 33:1951

    Article  CAS  Google Scholar 

  20. Qavamnia SS, Nasouri K (2015) Polym Sci Ser A 57:343

    Article  CAS  Google Scholar 

  21. Li Y, Chen C, Zhang S, Ni Y, Huang J (2008) Appl Surf Sci 254:5766

    Article  CAS  Google Scholar 

  22. Li L, Jiang Z, Xu J, Fang T (2014) J Appl Polym Sci 131:40304

    Google Scholar 

  23. Li XY, Wang X, Yu DG, Ye S, Kuang QK, Yi QW, Yao XZ (2012) J Nanomater 7:731382

    Google Scholar 

  24. Salimbeygi G, Nasouri K, Shoushtari AM, Malek R, Mazaheri F (2013) Micro Nano Lett 8:455

    Article  CAS  Google Scholar 

  25. Jin X, Ni QQ, Natsuki T (2011) J Compos Mater 45:2547

    Article  CAS  Google Scholar 

  26. Das NC, Liu Y, Yang K, Peng W, Maiti S, Wang H (2009) Polym Eng Sci 49:1627

    Article  CAS  Google Scholar 

  27. Mishra M, Singh AP, Dhawan SK (2013) J Alloys Compd 557:244

    Article  CAS  Google Scholar 

  28. Nasouri K, Bahrambeygi H, Rabbi A, Shoushtari AM, Kaflou A (2012) J Appl Polym Sci 126:127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komeil Nasouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasouri, K., Shoushtari, A.M. & Mojtahedi, M.R.M. Theoretical and experimental studies on EMI shielding mechanisms of multi-walled carbon nanotubes reinforced high performance composite nanofibers. J Polym Res 23, 71 (2016). https://doi.org/10.1007/s10965-016-0943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0943-3

Keywords

Navigation