Skip to main content
Log in

Structure and surface properties of chitosan/PEO/gelatin nanofibrous membrane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Present paper deals with the effect of gelatin on the structure, phase composition, and morphology of the electrospun chitosan/PEO nanofibers. Special attention is paid to the surface chemistry, surface structure and surface morphology of nanocomposite fibers, as these parameters are crucial for biomedical applications and for eventual subsequent surface modification. Gelatin prevents the crystallization of PEO and chitosan and has significant effect on the surface properties of chitosan/PEO/gelatin nanofibers, especially after the cross-linking. During the heating at 130 °C, gelatin appears on the surface of the nanofibers, what results in a large amount of the surface cracks, as well as in the dramatic changes of the surface chemistry and consequently surface adhesion properties. In addition, we observe regions with a continuous gelatin layer between fibers after the cross-linking, what leads to a significant decrease of the porosity of the nanofiber textile. Special attention has been paid to the complex characterization of the structure and surface chemistry of composite nanofibrous materials in order to predict their surface properties, crucial for wound dressing and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. eXPRESS Polym Lett 4(5):342–361

    Article  Google Scholar 

  2. Gudjónsdóttir M, Gacutan MD Jr, Mendes AC, Chronakis IS, Jespersen L, Karlsson AH (2015) Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis. Food Chem 184:167–175

    Article  Google Scholar 

  3. Mi F-L, Tan Y-C, Liang H-F, Sung H-S (2002) In vivo biocompatibility and degradability of a novel injectable- chitosan-based implant. Biomaterials 23:181–191

    Article  CAS  Google Scholar 

  4. Angelova N, Manolova N, Rashkov I, Maximova V, Bogdanova S, Domard A (1995) Preparation and properties of modified chitosan films for drug release. J Bioact Compat Polym 10:285–298

    CAS  Google Scholar 

  5. Selmer-Olsen E, Ratnaweera HC, Pehrson R (1996) A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste. Water Sci Technol 34:33–40

    Article  CAS  Google Scholar 

  6. Leceta I, Guerrero P, Ibarburu I, Duenas MT, de la Caba K (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899

    Article  CAS  Google Scholar 

  7. Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142

    Article  CAS  Google Scholar 

  8. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605

    Article  CAS  Google Scholar 

  9. Hasegawa M, Isogai A, Onabe F, Usuda M (1992) Dissolving states of cellulose and chitosan in trifluoroacetic acid. J Appl Polym Sci 45:1857–1863

    Article  CAS  Google Scholar 

  10. Ohkawa K, Minato K-I, Kumagai G, Hayashi S, Yamamoto H (2006) Chitosan nanofiber. Biomacromolecules 7:3291–3294

    Article  CAS  Google Scholar 

  11. Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthornc P, Pavasantd P, Supaphola P (2010) In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur Polym J 46:428–440

    Article  CAS  Google Scholar 

  12. Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714

    Article  CAS  Google Scholar 

  13. Haider S, Park S-Y (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328:90–96

    Article  CAS  Google Scholar 

  14. Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432

    Article  CAS  Google Scholar 

  15. Vrieze SD, Westbroeak P, Camp TV, van Langenhove L (2007) Electrospinning of chitosan nanofibrous structures: Feasibility study. J Mater Sci 42:8029–8034

    Article  CAS  Google Scholar 

  16. Spasova M, Manolova N, Paneva D, Rashkov I (2004) Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions. E-polymers 56:1–12

    Google Scholar 

  17. Duan B, Dong C, Yuan X, Yao K (2004) Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 15(6):797–811

    Article  CAS  Google Scholar 

  18. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184

    Article  CAS  Google Scholar 

  19. Ohkawa K, Kitagawa T, Yamamoto H (2004) Preparation and characterization of chitosan-gellan hybrid capsules formed by self-assembly at an aqueous solution interface. Macromol Mater Eng 289(1):33–40

    Article  CAS  Google Scholar 

  20. Li L, Hsieh Y-L (2006) Chitosan biocomponent nanofibers and nanoporous fibers. Carbohydr Res 341(3):374–381

    Article  CAS  Google Scholar 

  21. Park WH, Jeong L, Yoo DI, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 45(21):7151–7157

    Article  CAS  Google Scholar 

  22. Bao W-W, He L, Zhang Y-Z, Chang L-N (2006) Influence of blend on the electrospun silk fibroin nanofibers’ morphology. J Soochow Univ Eng Sci Ed 26(1):20–23

    CAS  Google Scholar 

  23. Peesan M, Rujiravanit R, Supaphol P (2006) Electrospinning of hexanoyl chitosan/polylactide blends. J Biomater Sci Polym Ed 17(5):547–565

    Article  CAS  Google Scholar 

  24. Chen Z, Mo X, Qing F (2006) Electrospinning of collagen-chitosan complex. Mater Lett 61(16):3490–3494

    Article  Google Scholar 

  25. Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LYL, Hutmacher DW, Shepard C, Raghunath M (2008) Electro-spinning of pure collagen nano-fibers – just an expansive way to make gelatin. Biomaterials 29:2293–2305

    Article  CAS  Google Scholar 

  26. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM (2006) Electtrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461

    Article  CAS  Google Scholar 

  27. Yang L, Fitie CFC, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2008) Mechanical properties of single elctrospun collagen type I fibers. Biomaterials 29:955–962

    Article  CAS  Google Scholar 

  28. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313–314:183–188

    Article  Google Scholar 

  29. Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG (1995) Physical cross-linking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 29(11):1373–1379

    Article  CAS  Google Scholar 

  30. Fujimori E (1965) Ultraviolet light-induced change in collagen macromolecules. Biopolymers Pept Sci Section 3(2):115–119

    Article  CAS  Google Scholar 

  31. Cooper DR, Davidson RJ (1965) The effect of ultraviolet irradiation on soluble collagen. Biochem J 97:139–147

    Article  CAS  Google Scholar 

  32. Sionkowska A, Skopinska-Wisniewska J, Gawron M, Kozlowska J, Planecka A (2010) Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int J Biol Macromol 47:570–577

    Article  CAS  Google Scholar 

  33. Jorge-Herrero E, Fernández P, Turnay J, Olmo N, Calero P, García R, Freile I, Castillo-Olivares JL (1999) Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 20:539–545

    Article  CAS  Google Scholar 

  34. Čapková P, Čajka A, Kolská Z, Kormunda M, Pavlík J, Munzarová M, Dopita M, Rafaja D (2015) Phase composition and surface properties of nylon-6 nanofiber prepared by nanospider technology at various electrode distances. J Polym Res 22:101

    Article  Google Scholar 

  35. Kolská Z, Řezníčková A, Švorčík V (2012) Surface characterization of polymer foils. E-polymers 083:1–13

    Google Scholar 

  36. Yui T, Imada K, Okuyama K, Obata Y, Suzuki K, Ogawa K (1994) Molecular and crystal structures of the anhydrous form of chitosan. Macromolecules 27:7601–7605

    Article  CAS  Google Scholar 

  37. Zhang C, Gamble S, Ainsworth D, Slawin AMZ, Andreev YG, Bruce PG (2009) Alkali metal crystalline polymer electrolytes. Nat Mater 8:580–584

    Article  Google Scholar 

  38. Hall MM, Veeraraghavan VG, Rubin H, Winchell PG (1977) The approximation of symmetric X-ray peaks by Pearson type VII distributions. J Appl Crystallogr 10:66

    Article  Google Scholar 

  39. Švorčík V, Makajová Z, Kasálková N, Kolská Z, Bačáková L (2012) Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications. J Nanosci Nanotechnol 12:6665–6671

    Article  Google Scholar 

  40. Kolská Z, Řezníčková A, Nagyová M, Slepičková Kasálková N, Sajdl P, Slepička P, Švorčík V (2014) Plasma activated polymers grafted with cyteamine for bio-application. Polym Degrad Stab 101:1–9

    Article  Google Scholar 

  41. Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082

    Article  CAS  Google Scholar 

  42. Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support by the project LO1509 of the Ministry of Education, Youth and Sports of the Czech Republic and by Operational Program Prague – Competitiveness project (CZ.2.16/3.1.00/24023) supported by EU EU and the SGS project of Internal grant agency UJEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykhailo Barchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barchuk, M., Čapková, P., Kolská, Z. et al. Structure and surface properties of chitosan/PEO/gelatin nanofibrous membrane. J Polym Res 23, 20 (2016). https://doi.org/10.1007/s10965-015-0906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0906-0

Keywords

Navigation