Skip to main content
Log in

Phase composition and surface properties of nylon-6 nanofibers prepared by nanospider technology at various electrode distances

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Phase composition, morphology and surface properties of nylon-6 nanofibers prepared by Nanospider technology have been studied for dependence on spinning distance using a combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrokinetic analysis, and scanning electron and transmission electron microscopy (SEM, TEM). The effect of the electric field strength on the nanofiber phase composition was investigated via the variable distance of the electrodes. Quantitative XRD phase analysis revealed the dependence of the phase composition on the electrode distance, which in the case of roller electrospinning, differs from that by melt spinning. A combination of XRD, XPS, and TEM suggested a core-shell structure model of the nanofibers. The XPS and electrokinetic analysis revealed the difference in surface chemistry and zeta potential at the face and reverse side of the nanofiber textile adjacent to a polypropylene (PP) antistatic spunbond, which may be important in subsequent chemical modification of nanofiber textiles and in its use for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ant HR, Bajgai MP, Yi C, Nirmala R, Nam KT, Baek W, Kim HY (2010) Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf A Physicochem Eng Asp 370:87–94

    Article  Google Scholar 

  2. Sang Y, Gu Q, Sun T, Li F, Liang CJ (2008) Filtration by a novel nanofibers membrane and aluminia adsorption to remove copper(II) from groundwater. J Hazard Mater 153:860–866

    Article  CAS  Google Scholar 

  3. Yun KM, Hogan CJ, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62:4751–4759

    Article  CAS  Google Scholar 

  4. Nova CJM, Jeanjean DP, Belleville MP, Barboiu M, Rivallin M, Rio G (2008) Elaboration, characterization and study of a new hybrid chitosan/ceramic membrane for affinity membrane chromatography. J Membr Sci 321:81–89

    Article  CAS  Google Scholar 

  5. Vitchuli N, Shi Q, Nowak J, Cord MM, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116:2181–2187

    CAS  Google Scholar 

  6. Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nan C (2008) Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoro-propylen) with nano-sized ceramics fillers. Electrochim Acta 54:228–234

    Article  CAS  Google Scholar 

  7. Guo B, Zhao S, Han G, Zhang L (2008) Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol. Electrochim Acta 53:5174–5179

    Article  CAS  Google Scholar 

  8. Sill TJ, Recum HA (2008) Electrospinning: application in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    Article  CAS  Google Scholar 

  9. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107

    Article  CAS  Google Scholar 

  10. Zhang Y, Venugopal JR, Turki AE, Ramakrishna S, Su B, Li CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322

    Article  CAS  Google Scholar 

  11. Park SH, Kim TG, Kim HC, Yang DY, Park TG (2008) Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for application in tissue regeneration. Acta Biomater 4:1198–1207

    Article  CAS  Google Scholar 

  12. Sohrabi A, Shaibani PM, Thundat T (2013) The effect of applied electric field on on the diameter and size distribution of electrospun nylon6 nanofibers. Scanning 35:183–188

    Article  CAS  Google Scholar 

  13. Fornes TD, Paul DR (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44:3945–3961

    Article  CAS  Google Scholar 

  14. Samon JM, Schultz JM, Wu J, Hsiao B, Yeh F, Kolb R (1999) Study of the structure development during the melt spinning of nylon 6 fiber by on-line wide-angle synchrotron x-ray scattering techniques. J Polym Sci Part B-Polym Phys 37:1277–1287

    Article  CAS  Google Scholar 

  15. Zhang S, Shim WS, Kim J (2009) Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency. Materials 30:3659–3666

    CAS  Google Scholar 

  16. Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem 41:545–553

    Article  CAS  Google Scholar 

  17. Penning JP, Ruiten JV, Brouwer R, Gabriëlse W (2003) Orientation and structure development in melt-spun Nylon-6 fibres. Polymer 44:5869–5876

    Article  CAS  Google Scholar 

  18. Hussain D, Loyal F, Greiner A, Wendorff JH (2010) Structure property correlations for electrospun nanofiber nonwovens. Polymer 51:3989–3997

    Article  CAS  Google Scholar 

  19. Deyab SSA, Newehy MHE, Nirmala R, Megeed AA, Kim HY (2013) Preparation of nylon-6/chitosan composites by nanospider technology and their use as candidate for antibacterial agents. Korean J Chem Eng 30:422–428

    Article  Google Scholar 

  20. Brill R (1943) Crystal structure of nylon 6. Z Physik Chem B 53:61–66

    Google Scholar 

  21. Holmes R, Bunn CW, Smith DL (2003) The crystal structure of polycaproamide: Nylon 6. J Polym Sci A Polym Chem 17:159–177

    Google Scholar 

  22. Arimoto H, Ishibashi M, Hirai M, Chatani YJ (1965) Crystal structure of gamma-form of nylon 6. Polym Sci Part A 3:317–326

    CAS  Google Scholar 

  23. Roldan LG, Kaufman HS (1963) Crystallization of nylon 6. J Polym Sci B 1:603–608

    Article  CAS  Google Scholar 

  24. Illers KH, Haberkorn H (1971) Specific volume, heat of fusion and crystallinity of nylon-6.6 and nylon 8. Makromol Chem 146:267–274

    Article  CAS  Google Scholar 

  25. Gurato G, Fichera A, Grandi FZ, Zannetti R, Canal P (1974) Crystalinity and polymorphism of 6-polyamide. Makromol Chem 175:953–975

    Article  CAS  Google Scholar 

  26. Kyotani M, Mitsuhashi S (1972) Studies on crystalline forms of nylon 6. II. Crystallization from the melt. J Polym Sci, Part A-2 10:1497–1508

    Article  CAS  Google Scholar 

  27. Murthy NS, Aharoni SM, Szollosi AB (1985) Stability of the γ form and the development of the α form in nylon 6. J Polym Sci Polym Phys 23:2549–2565

    Article  CAS  Google Scholar 

  28. Murthy NS, Curran SA, Aharoni SM, Minor H (1991) Premelting crystalline relaxations and phase-transitions in nylon-6 and 6,6. Macromolecules 24:3215–3220

    Article  CAS  Google Scholar 

  29. Ramesh C, Gowd EB (2001) High-temperature X-ray diffraction studies on the crystalline transitions in the alpha- and gamma-forms of nylon-6. Macromolecules 34:3308–3313

    Article  CAS  Google Scholar 

  30. Lincoln DM, Vaia RA, Wang ZG, Hsiao BS, Krishnamoorti R (2001) Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42:9975–9985

    Article  CAS  Google Scholar 

  31. Salem DR, Moore RAF, Weigmann HD (1987) Macromolecular order in spin-oriented nylon-6 (polycaproamide) fibers. J Polym Sci Part B: Polym Phys 25:567–589

    Article  CAS  Google Scholar 

  32. Campoy I, Gomez MA, Marco C (1998) Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer 39:6279–6288

    Article  CAS  Google Scholar 

  33. Okada A, Kawasumi M, Tajima I, Kurauchi T, Kamigaito O (1989) A solid state NMR study on crystalline forms of nylon 6. J Appl Polym Sci 37:1363–1371

    Article  CAS  Google Scholar 

  34. Jirsak O, Petrik S (2012) Recent advances in nanofibre technology: needleless electrospinning. Int J Nanotechnol 9:836–845

    Article  CAS  Google Scholar 

  35. Yener F, Jirsak O (2012) Comparison between the needle and roller electrospinning of polyvinylbutyral. J Nanomater 2012:1155–1161

    Article  Google Scholar 

  36. Kolská Z, Řezníčková A, Švorčík V (2012) Surface characterization of polymer foils. e-Polymers: Article 083:1

  37. Materials Studio Accelrys Softrware Inc. (2007) http://accelrys.com/products/materials-studio/visualization-and-statistics-software.html

  38. Hall MM Jr, Veerarghavan VG, Rubin H, Winchell PG (1977) J Appl Cryst 10:66–68

    Article  Google Scholar 

  39. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22:151–152

    Article  CAS  Google Scholar 

  40. Vesel A, Mozetic M, Strnad S, Persin Z, Stana-Kleinschek K, Hauptman N (2009) Plasma modification of viscose textile. Vacuum 84:79–82

    Article  CAS  Google Scholar 

  41. Li YY, Goddard WA (2002) Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 35:8440–8455

    Article  CAS  Google Scholar 

  42. Liu Y, Li C, Guan F, Yi G, Hedin NE, Zhu L, Fong H (2007) Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40:6283–6290

    Article  CAS  Google Scholar 

  43. Švorčík V, Řezníčková A, Kolská Z, Slepička P, Hnatowicz V (2010) Variable surface properties of PTFE foils. e-Polymers Article 133: 1

  44. Kolská Z, Řezníčková A, Hnatowicz V, Švorčík V (2012) Surface properties of poly(ethylene terephthalate) foils of different thicknesses. J Mater Sci 47:6429–6435

    Article  Google Scholar 

  45. Kolská Z, Řezníčková A, Nagyová M, Slepičková Kasálková N, Sajdl P, Slepička P, Švorčík V (2014) Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym Degrad Stabil 101:1–9

    Article  Google Scholar 

  46. Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082

    Article  CAS  Google Scholar 

  47. Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730

    Article  CAS  Google Scholar 

  48. Sirmerová M, Procházkova G, Siristova L, Kolská Z, Branyik T (2013) Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J Appl Phycol 25:1687–1695

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, project No: 13-06609S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavla Čapková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čapková, P., Čajka, A., Kolská, Z. et al. Phase composition and surface properties of nylon-6 nanofibers prepared by nanospider technology at various electrode distances. J Polym Res 22, 101 (2015). https://doi.org/10.1007/s10965-015-0741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0741-3

Keywords

Navigation