Skip to main content
Log in

Surface properties of poly(ethylene terephthalate) foils of different thicknesses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface properties of commercially available poly(ethylene terephthalate) (PET) foils of different thicknesses (3, 13, 23, 50, and 100 μm) were characterized using different analytical methods. Surface roughness and morphology were determined by atomic force microscopy, goniometry was used for determination of contact angle (wettability of surface) and electrokinetical analysis (zeta potential) for characterization of surface polarity and conductivity. X-ray photoelectron spectroscopy was used for characterization of PET surface chemistry. Infrared spectroscopy and differential scanning calorimetry (DSC) were used for determination of crystallinity portion. By DSC analysis, it was confirmed that the crystallinity portion depends on the foil thickness. Most important result of this study is that the surface properties of PET foils depend not only on the foil thickness but also on the foil side under study. This finding may be of importance for future experiments performed on PET foils and for their application in tissue engineering or microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heitz J, Gumpenberger T, Kahr H, Romanin C (2010) Biotechnol Appl Biochem 39:59. doi:10.1042/BA20030107

    Article  Google Scholar 

  2. Slepička P, Kolská Z, Náhlík J, Hnatowicz V, Švorčík V (2009) Surf Interface Anal 41:741. doi:10.1002/sia.3082

    Article  Google Scholar 

  3. Romero-Hernandez O, Hernandez SR, Munoz D, Detta-Silveira E, Palacios-Brun A, Laguna A (2009) Int J Life Cycle Assess 14:107. doi:10.1007/s11367-008-0053-5

    Article  CAS  Google Scholar 

  4. Yakimtsov VP, Brazovskii II, Sal’nikova IA, Stanchik AI (2008) J Frict Wear 29:137. doi:10.3103/S1068366608020104

    Article  Google Scholar 

  5. Shukla SR, Harad AM, Jawale LS (2009) Polym Degrad Stab 94:604. doi:10.1016/j.polymdegradstab.2009.01.007

    Article  CAS  Google Scholar 

  6. Genta M, Iwaya T, Sasaki M, Goto M (2007) Waste Manag (Oxford) 27:1167. doi:10.1016/j.wasman.2006.06.005

    Article  CAS  Google Scholar 

  7. Almeida CMVB, Rodrigues AJM, Bonilla SH, Giannetti BF (2010) J Clean Prod 18:32. doi:10.1016/j.jclepro.2009.03.019

    Article  CAS  Google Scholar 

  8. Kesting W, Bahners T, Schollmeyer E (1993) J Polym Sci B 31:887. doi:10.1002/polb.1993.090310717

    Article  CAS  Google Scholar 

  9. Řezníčková A, Chaloupka A, Heitz J, Kolská Z, Švorčík V (2012) Surf Interface Anal 44:296. doi:10.1002/sia.3801

    Article  Google Scholar 

  10. Siegel J, Slepička P, Heitz J, Kolská Z, Sajdl P, Švorčík V (2010) Appl Surf Sci 256:2205. doi:10.1016/j.apsusc.2009.09.074

    Article  CAS  Google Scholar 

  11. Řezníčková A, Kolská Z, Hnatowicz V, Stopka P, Švorčík V (2011) Nucl Instrum Methods B 269:83. doi:10.1016/j.nimb.2010.11.018

    Article  Google Scholar 

  12. Švorčík V, Hubáček T, Slepička P, Siegel J, Kolská Z, Bláhová O, Macková A, Hnatowicz V (2009) Carbon 47:1770. doi:10.1016/j.carbon.2009.03.001

    Article  Google Scholar 

  13. Švorčík V, Kolská Z, Luxbacher T, Mistrík J (2010) Mater Lett 64:611. doi:10.1016/j.matlet.2009.12.018

    Article  Google Scholar 

  14. Švorčík V, Kolská Z, Kvítek O, Siegel J, Řezníčková A, Řezanka P, Záruba K (2011) Nanoscale Res Lett 6:607. doi:10.1186/1556-276X-6-607

    Article  Google Scholar 

  15. Švorčík V, Řezníčková A, Sajdl P, Kolská Z, Makajová Z, Slepička P (2011) J Mater Sci 46:7917. doi:10.1007/s10853-011-5920-y

    Article  Google Scholar 

  16. Švorčík V, Řezníčková A, Kolská Z, Slepička P, Hnatowicz V (2010) e-Polymers 133:1

    Google Scholar 

  17. Chaloupka A, Šimek P, Šutta P, Švorčík V (2010) Mater Lett 64:1316. doi:10.1016/j.matlet.2010.03.019

    Article  CAS  Google Scholar 

  18. Švorčík V, Ročková K, Ratajová E, Heitz J, Huber N, Bauerle D, Bacakova L, Dvorankova B, Hnatowicz V (2004) Nucl Instrum Methods B 217:307. doi:10.1016/j.nimb.2003.09.036

    Article  Google Scholar 

  19. Luxbacher T, Bukšek H, Petrinić I, Pušić T (2009) Tekstil 58:393

    Google Scholar 

  20. Švorčík V, Chaloupka A, Záruba K, Král V, Bláhová O, Macková A, Hnatowicz V (2009) Nucl Instrum Methods B 267:2484. doi:10.1016/j.nimb.2009.05.071

    Article  Google Scholar 

  21. van Krevelen DW (1990) Properties of polymers. Elsevier Science Publishing Co., Amsterdam

    Google Scholar 

  22. Mehta A, Gaur U, Wunderlich B (1978) J Polym Sci B 16:289. doi:10.1002/pol.1978.180160209

    CAS  Google Scholar 

  23. Kotál V, Švorčík V, Slepička P, Sajdl P, Bláhová O, Šutta P, Hnatowicz V (2007) Plasma Proc Polym 4:69. doi:10.1002/ppap.200600069

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Grant Agency of Czech Republic, project no. P108/12/G108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeňka Kolská.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolská, Z., Řezníčková, A., Hnatowicz, V. et al. Surface properties of poly(ethylene terephthalate) foils of different thicknesses. J Mater Sci 47, 6429–6435 (2012). https://doi.org/10.1007/s10853-012-6573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6573-1

Keywords

Navigation