Skip to main content

Advertisement

Log in

Poly(dimethylsiloxane-urethane) membranes: effect of linear siloxane chain and caged silsesquioxane on gas transport properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of poly(dimethylsiloxane) (PDMS) or polypropylene glycol (PPG) linear chain and polyoctahedral oligosilsesquioxanes (POSS) cubic nanoparticles on surface and gas transport properties of poly(dimethylsiloxane-urethane) PDMS-PU or poly(propylene glycol-urethane) (PPG-PU) hybrid membranes were studied. PDMS-PU or PPG-PU hybrid membranes were prepared using PDMS-diol or PPG-diol as a chain extender and diisocyanate with POSS-amine macromonomer as a crosslinker. The macromer synthesized was characterized using FT-IR, 1H-, 13C- and 29Si-NMR spectroscopic methods. The hybrid membranes were characterized by CP-MAS 29Si-NMR, DSC, contact angle, WAXD, AFM and density measurements. The glass transition temperature (Tg) of the hybrid membranes were determined by differential scanning calorimetry (DSC) and were found to be in the range of 176–189°C. The surface free energy was reduced by increasing the POSS-amine crosslinker content of the membranes. The AFM measurement showed phase separation of POSS-amine molecule and PDMS with the urethane matrix on the surfaces. The XRD profiles confirm that the membranes were highly amorphous in nature. The decrease in permeability was observed by increasing the concentration of POSS-amine incorporated hybrid membranes. The selectivities of O2/N2 and CO2/N2 gas pairs increased with an increase in the POSS concentration. This suggests that the selectivities were dependent mainly on the presence of urethane and ester functional groups in the crosslinker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PA :

Permeability coefficient

NA :

Steady state flux

ΔPA :

Pressure difference

d:

Thickness of the membranes

α A/B :

Selectivity of gas A to B

ρ film :

Density of the film

m air :

Weight of polymer in air

m liquid :

Weight of polymer in liquid

ρ liquid :

Density of the liquid

γ LV :

Interfacial tension at liquid/air interface

γ dL :

Dispersion factors of membrane for liquid

γ dS :

Dispersion factors of membrane for solid

γ pL :

Polar factors of liquid

γ pS :

Polar factors of solid

γ SV :

Total surface energy of membrane

θ:

Contact angle between the sample and liquid/air interface.

Φ f :

Volume fraction of nanofiller in the membrane

DA :

Diffusion coefficient

SA :

Sorption coefficient

Pc :

Permeability of composite

Pm :

Permeability of pure polymer matrices

References

  1. Sridhar S, Smitha M, Aminabhavi TM (2007) Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Sep Purif Rev 36:113

    Article  CAS  Google Scholar 

  2. Sairam M, Nataraj SK, Aminabhavi TM (2006) Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep Purif Rev 35:249

    Article  CAS  Google Scholar 

  3. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165

    Article  CAS  Google Scholar 

  4. Robeson LM, Burgoyne WF, Langsam M, Savoca AC, Tien CF (1994) High performance polymers for membrane separation. Polymer 35:4970

    Article  CAS  Google Scholar 

  5. Sridhar S, Aminabhavi TM, Mayor SJ, Ramakrishna M (2007) Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes. Ind Eng Chem Res 46:8144–8151

    Article  CAS  Google Scholar 

  6. Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM (2007) Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf A Physicochem Eng Asp 297:267

    Article  CAS  Google Scholar 

  7. Yave W, Peinemann K-V, Shishatskiy S, Khotimskiy V, Chirkova M, Matson S, Litvinova E, Lecerf N (2007) Synthesis, characterization, and membrane properties of poly(1-trimethylgermyl-1-propyne) and its nanocomposite with TiO2. Macromolecules 40:8991

    Article  CAS  Google Scholar 

  8. Moaddeb M, Koros WJ (1997) Gas transport properties of thin polymer membranes in the presence of silicon dioxide particles. J Membr Sci 125:143

    Article  CAS  Google Scholar 

  9. Park HB, Kim JK, Nam SY, Lee YM (2003) Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties. J Membr Sci 220:59

    Article  CAS  Google Scholar 

  10. Patel NP, Miller AC, Spontak RJ (2003) Highly CO2-permeable and selective polymer nanocomposite membranes. Adv Mater 15:729

    Article  CAS  Google Scholar 

  11. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2003) Sorption, transport and structural evidence for enhanced free volume in poly(4-methyl-2-entyne)/fumed silica nanocomposite membranes. Chem Mater 15:109

    Article  CAS  Google Scholar 

  12. Qiu J, Zheng JM, Pienemann KV (2006) Gas transport properties in a novel poly(trimethylsilylpropyne) composite membrane with nanosized organic filler Trimethylsilylglucose. Macromolecules 39:4093

    Article  CAS  Google Scholar 

  13. Ni Y, Zheng Z (2007) Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly(ε-caprolactone) with α -cyclodextrin. J Polym Sci A Polym Chem 45:1247

    Article  CAS  Google Scholar 

  14. Markovic E, Markovic MG, Clarke S, Matisons J, Hussain M, Simon GP (2007) Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane: Synthesis and thermal analysis. Macromolecules 40:2694

    Article  CAS  Google Scholar 

  15. Ashworth AJ, Brisdon BJ, England R, Reddy BSR, Zafar I (1991) The permselectivity of polyorganosiloxanes containing ester functionalities. J Membr Sci 56:217

    Article  CAS  Google Scholar 

  16. Achalpurkar MP, Kharul UK, Lohokare HR, Karadkar PB (2007) Gas permeation in amine functionalized silicon rubber membranes. Sep Purif Technol 57:304

    Article  CAS  Google Scholar 

  17. Raghu AV, Gadaginamath GS, Priya M, Seema P, Jeong HM, Aminabhavi TM (2008) Synthesis and characterization of novel polyurethanes based on N1,N4-Bis[(4-hydroxyphenyl)methylene]succinohydrazide hard segment. J Appl Polym Sci 110:2315

    Article  CAS  Google Scholar 

  18. Raghu AV, Anita G, Barigaddi YM, Gadaginamath GS, Aminabhavi TM (2007) Synthesis and characterization of novel polyurethanes based on 2,6-Bis(4-hydroxybenzylidene) cyclohexanone hard segments. J Appl Polym Sci 104:81

    Article  CAS  Google Scholar 

  19. Hasegawa I (1993) Co-hydrolysis products of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions. J Sol-Gel Sci Technol 1:57

    Article  CAS  Google Scholar 

  20. Madhavan K, Reddy BSR (2006) Poly(dimethylsiloxane-urethane) membranes: effect of hard segment in urethane on gas transport properties. J Membr Sci 283:357

    Article  CAS  Google Scholar 

  21. Madhavan K, Reddy BSR (2009) Synthesis and characterization of polyurethane hybrids: influence of Poly(dimethylsiloxane) linear chain and silsesquioxane cubic structure on thermal and mechanical properties of polyurethane hybrids. J Appl Polym Sci 113:4052

    Article  CAS  Google Scholar 

  22. Soh MS, Yap AUJ, Sellinger A (2007) Methacrylate and epoxy functionalized nanocomposites based on silsesquioxane cores for use in dental applications. Eur Polym J 43:315

    Article  CAS  Google Scholar 

  23. Ríos-Dominguez H, Ruiz-Treviño FA, Contreras-Reyes R, González-Montiel A (2006) Syntheses and evaluation of gas transport properties in polystyrene–POSS membranes. J Membr Sci 271:94

    Article  Google Scholar 

  24. Liang K, Li G, Yoghiani H, Koo JH, Pittman CU Jr (2006) Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: Synthesis and characterization. Chem Mater 18:301

    Article  CAS  Google Scholar 

  25. Adamso AW (1960) Physical chemistry of surfaces. Interscience Pub. Inc., New York

    Google Scholar 

  26. Madhavan K, Reddy BSR (2009) Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J Membr Sci 342:291

    Article  CAS  Google Scholar 

  27. Chen RS, Chang CJ, Chang YH (2005) Study on siloxane-modified polyurethane dispersions from various polydimethylsiloxane. J Polym Sci A Polym Chem 43:3482

    Article  CAS  Google Scholar 

  28. Lee YJ, Kuo SW, Huang WJ, Lee HY, Chang FC (2004) Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. J Polym Sci A Polym Chem 42:1127

    CAS  Google Scholar 

  29. Park HB, Kim CK, Lee YM (2002) Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. J Membr Sci 204:257

    Article  CAS  Google Scholar 

  30. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in Poly(dimethylsiloxane). J Polym Sci B Polym Phys 38:415

    Article  CAS  Google Scholar 

  31. Iyer P, Iyer G, Coleman M (2010) Gas transport properties of polyimide–POSS nanocomposites. J Membr Sci 358:26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K. Madhavan thanks CSIR, New Delhi for the Senior Research Fellowship and D. Gnanasekaran thanks the department of Science and Technology, New Delhi for JRF (No. SR/S1/PC-33/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boreddy S. R. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhavan, K., Gnanasekaran, D. & Reddy, B.S.R. Poly(dimethylsiloxane-urethane) membranes: effect of linear siloxane chain and caged silsesquioxane on gas transport properties. J Polym Res 18, 1851–1861 (2011). https://doi.org/10.1007/s10965-011-9592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9592-8

Keywords

Navigation