Skip to main content
Log in

Siloxane- and Imide-modified Epoxy Resin Cured with Siloxane-containing Dianhydride

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hydrosilylation of nadic anhydride by tetramethyldisiloxane yielded 5,5’-(1,1,3,3-tetramethyl-1,1,3,3-disiloxanediayl)-bis-norborane-2,3-dicarboxylic anhydride (I), which further reacted with 4-aminophenol to form N,N’-bis(4-hydroxyphenyl)-5,5’-(1,1,3,3-tetramethyl-1,1,3,3-disiloxanediallyl)-binorborane-2,3-dicarboximide (II) reacted with epichlorohydrin to form siloxane- and imide-modified epoxy (i.e. N,N’-diglycidylether-bis-(4-phenyl)-5,5’-(1,1,3,3-tetramethyl-1,1,3,3-disloxanediallyl)-bis-norborane-2,3-dicarboximide (III) (Scheme 1). Various equivalent ratios of III/I for 1/1, 1/0.8 and Bisphenol F epoxy (830LVP DIC Co.)/I for 1/1, 1/0.8 were prepared and cured to produce four crosslinked materials. Thermal and dynamic mechanical properties were measured with TMA and DMA. Kinetic analysis was studied with dynamic DSC, which revealed a relatively lower curing activation energy of III/I systems, because the tertiary amine on the imide group catalyzed the curing reaction. III/I system also indicated moderate Tg, storage modulus but higher loss modulus as compared with Bisphenol F epoxy/I systems. These phenomena were interpreted by the fact that the siloxane group in III toughened the crosslinked materials. In addition, photos of SEM, carbon-mapping-SEM, oxygen-mapping SEM and siloxane-mapping-SEM indicated all homogeneity of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Li, L. Wang, K. Jacob and C. P. Wong, J. Polym. Sci. Part A: Polym. Chem., 40, 1796 (2002).

    Article  Google Scholar 

  2. J. G. Gao, D. L. Li, S. G. Shen and G. D. Liu, J. Appl. Polym. Sci., 83, 1586 (2002).

    Article  Google Scholar 

  3. K. C. Cheng, S. Y. Yu and W. Y. Chiu, J. Appl. Polym. Sci., 83, 274 (2002).

    Google Scholar 

  4. G. H. Hsiue, H. F. Wei, S. J. Shiao, W. J. Kuo and Y. A. Sha, J. Polym. Degrad. Stab., 73, 309 (2001).

    Article  Google Scholar 

  5. R. H. Lin, J. Polym. Sci. Part A: Polym. Chem., 38, 2934 (2000).

    Article  Google Scholar 

  6. C. K. Riew, Ed., Rubber Toughened Plastics, Advances in Chemistry Series 222, American Chemical Society, Washington, DC, 1989.

    Google Scholar 

  7. S. Montarnal, J. P. Pascault and H. Sautereau, ibid., pp. 193–223.

  8. W. D. Bascom and D. L. Hunston, ibid., pp. 135–172.

  9. E. H. Rowe, G. R. Siebert and R. S. Drake, Mod. Plast., 49, 110 (1978).

    Google Scholar 

  10. L. T. Manzione, J. K. Gillham and C. A. McPherson, J. Appl. Polym. Sci., 26, 889 (1981).

    Article  Google Scholar 

  11. J. R. Morgan, R. M. King and C. M. Walkup, Polymer, 24, 375 (1984).

    Article  Google Scholar 

  12. A. C. Meeks, Polymer, 15, 675 (1974).

    Article  Google Scholar 

  13. J. A. Manson and L. Sperling, Polymer Blends and Composites, Plenum, New York, 1983.

    Google Scholar 

  14. M. J. Abad, L. Barral, J. Cano, J. Lopez, P. Nogueira, C. Ramirez and A. Torres, Eur. Polym. J., 37, 1613 (2001).

    Article  Google Scholar 

  15. J. Y. Lee, M. J. Shim and S. W. Kim, J. Appl. Polym. Sci., 81, 479 (2001).

    Article  Google Scholar 

  16. A. A. Kumar, M. Alagar and R. M. V. G. K. Rao, Polymer, 43, 693 (2002).

    Article  Google Scholar 

  17. M. Ochi and S. Shimaoka, Polymer, 40, 1305 (1999).

    Article  Google Scholar 

  18. A. F. Yee and R. A. Pearson, J. Mater. Sci., 21, 2475 (1986).

    Article  Google Scholar 

  19. C. B. Bucknall and I. K. Partridge, Polym. Engng. Sci., 26, 54 (1986).

    Article  Google Scholar 

  20. W. D. Bascom, R. L. Cottington, R. L. Jones and P. Peyser, J. Appl. Polym. Sci., 19, 2425 (1975).

    Article  Google Scholar 

  21. J. N. Sultan and F. J. McGarry, Polym. Eng. Sci., 13, 29 (1973).

    Article  Google Scholar 

  22. A. A. Kumar, M. Alagar and R. M. V. G. K. Ras, J. Appl. Polym. Sci., 81, 1330 (2001).

    Article  Google Scholar 

  23. V. J. Eddy, J. E. Hallgren and E. Robert, J. Polym. Sci., Part A: Polym. Chem., 28, 2417 (1990).

    Google Scholar 

  24. W. J. Wang, L. H. Perng, G. H. Hsiue and F. C. Chang, Polymer, 41, 6113 (2000).

    Article  Google Scholar 

  25. IPC-TM-650, The Institute for Interconnecting and Packaging Electronic Circuits, 2215 Sanders Road, Northbrook, IL 60062-6135, USA.

  26. H. E. Kissinger, Analytical Chem., 29, 1703 (1957).

    Article  Google Scholar 

  27. C. P. R. Nair, K. Krishnan and K. N. Ninan, Thermochim. Acta, 39, 61 (2000).

    Google Scholar 

  28. L. F. Yang, K. D. Yao and W. Koh, J. Appl. Polym. Sci., 73, 1501 (1998).

    Article  Google Scholar 

  29. K. J. Saunders, Ed., Organic Polymer Chemistry, Chapman and Hall, London, 1973, Ch. 16, p. 375.

    Google Scholar 

  30. L. Shechter and J. Wynstra, Ind. Eng. Chem., 48, 86 (1956).

    Article  Google Scholar 

  31. A. Moroni, J. Mijovic and E. M. Pearce, J. Appl. Polym. Sci., 32, 3761 (1986).

    Article  Google Scholar 

  32. W. Lynch, Ed., Handbook of Silicone Rubbers Fabrication, Van Nostrand Reinhold, New York, 1978, p. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-Shih Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HT., Lin, MS., Chuang, HR. et al. Siloxane- and Imide-modified Epoxy Resin Cured with Siloxane-containing Dianhydride. J Polym Res 12, 385–391 (2005). https://doi.org/10.1007/s10965-005-1766-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-005-1766-9

Keywords

Navigation