Skip to main content
Log in

An Explicit Extragradient Algorithm for Solving Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce an explicit iterative algorithm for solving a (pseudo) monotone variational inequality under Lipschitz condition in a Hilbert space. The algorithm is constructed around some projections incorporated by inertial terms. It uses variable stepsizes which are generated at each iteration by some simple computations. Furthermore, it can be easily implemented without the prior knowledge of the Lipschitz constant of the operator. Theorems of weak convergence are established under mild conditions, and some numerical results are reported for the purpose of comparison with other algorithms. The obtained results in this paper extend some related works in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hartman, P., Stampacchia, G.: On some non-linear elliptic diferential–functional equations. Acta Math. 115, 271–310 (1966)

    Article  MathSciNet  Google Scholar 

  2. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  3. Facchinei, F., Pang, J.S.: Finite—Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    MATH  Google Scholar 

  4. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2000)

    MATH  Google Scholar 

  5. Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  6. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  Google Scholar 

  10. Popov, L.D.: A modification of the Arrow–Hurwicz method for searching for saddle points. Mat. Zametki 28(5), 777–784 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Malitsky, Y.V., Semenov, V.V.: An extragradient algorithm for monotone variational inequalities. Cybern. Syst. Anal. 50, 271–277 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gibali, A.: A new Bregman projection method for solving variational inequalities in Hilbert spaces. Pure Appl. Funct. Anal. 3, 403–415 (2018)

    MathSciNet  Google Scholar 

  13. Hieu, D.V., Thong, D.V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Glob. Optim. 70, 385–399 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  15. Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58, 341–350 (2014)

    Article  MathSciNet  Google Scholar 

  16. Malitsky, Y.V.: Golden ratio algorithms for variational inequalities. Math. Program. (2019). https://doi.org/10.1007/s10107-019-01416-w

    Article  Google Scholar 

  17. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  18. Semenov, V.V.: A version of the mirror descent method to solve variational inequalities. Cybern. Syst. Anal. 53, 234–243 (2017)

    Article  Google Scholar 

  19. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  20. Tinti, F.: Numerical solution for pseudomonotone variational inequality problems by extragradient methods. Var. Anal. Appl. 79, 1101–1128 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Shehu, Y.: Nonlinear iteration method for monotone variational inequality and fixed point problem. Fixed Point Theory 20, 663–682 (2019)

    Article  Google Scholar 

  22. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified extragradient-like algorithms with new stepsizes for variational inequalities. Comput. Optim. Appl. 73, 913–932 (2019)

    Article  MathSciNet  Google Scholar 

  23. Hieu, D.V., Cho, Y.J., Xiao, Y.-B.: Golden ratio algorithms with new stepsize rules for variational inequalities. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5703

    Article  MathSciNet  MATH  Google Scholar 

  24. Hieu, D.V., Cho, J.E., Xiao, Y.B., Kumam, P.: Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces. Optimization (2019). https://doi.org/10.1080/02331934.2019.1683554

    Article  Google Scholar 

  25. Hieu, D.V., Vy, L.V., Quy, P.K.: Three-operator splitting algorithm for a class of variational inclusion problems. Bull. Iran. Math. Soc. (2019). https://doi.org/10.1007/s41980-019-00312-5

    Article  Google Scholar 

  26. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)

    Article  MathSciNet  Google Scholar 

  27. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  28. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65, 2217–2226 (2016)

    Article  MathSciNet  Google Scholar 

  30. Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)

    Article  MathSciNet  Google Scholar 

  31. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    MathSciNet  Google Scholar 

  32. Gibali, A., Hieu, D.V.: A new inertial double-projection method for solving variational inequalities. J. Fixed Point Theory Appl. 21, 97 (2019)

    Article  MathSciNet  Google Scholar 

  33. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  34. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  Google Scholar 

  35. Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, ThM: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12, 87–102 (2018)

    Article  MathSciNet  Google Scholar 

  36. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, ThM: Inertial projection and contraction algorithms for variational inequalities. J. Global Optim. 70, 687–704 (2018)

    Article  MathSciNet  Google Scholar 

  37. Dong, Q.L., Tang, Y.C., Cho, Y.J., Rassias, ThM: “Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Global Optim. 71, 341–360 (2018)

    Article  MathSciNet  Google Scholar 

  38. Dong, Q.L., Cho, Y.J., Rassias, ThM: General inertial Mann algorithms and their convergence analysis for nonexpansive mappings. In: Rassias, ThM (ed.) Applications of Nonlinear Analysis, pp. 175–191. Springer, Berlin (2018)

    Chapter  Google Scholar 

  39. Dong, Q.L., Cho, Y.J., Rassias, ThM: The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. 12, 1871–1896 (2018)

    Article  MathSciNet  Google Scholar 

  40. Dong, Q.L., Huang, J., Li, X.H., Cho, Y.J., Rassias, ThM.: MiKM: Multi-step inertial Krasnosel’ski\(\check{\i }\)–Mann algorithm and its applications. J. Global Optim. 73, 801–824 (2019)

  41. Ceng, L.C., Teboulle, M., Yao, J.C.: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems. J. Optim. Theory Appl. 146, 19–31 (2010)

    Article  MathSciNet  Google Scholar 

  42. Gibali, A.: A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. 6, 41–51 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0412-z

    Article  MATH  Google Scholar 

  44. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0547-6

    Article  MATH  Google Scholar 

  45. Yang, J., Liu, H.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0504-4

    Article  Google Scholar 

  46. Sun, D.: A projection and contraction method for the nonlinear complementarity problems and its extensions. Math. Numer. Sin. 16, 183–194 (1994)

    Article  MathSciNet  Google Scholar 

  47. Khoroshilova, E.V.: Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim. Lett. 7, 1193–1214 (2013)

    Article  MathSciNet  Google Scholar 

  48. Seydenschwanz, M.: Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions. Comput. Optim. Appl. 629, 731–760 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and the anonymous referees for their valuable comments and suggestions which helped us very much in improving the original version of this paper. The paper is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the Project: 101.01-2020.06 and by Namur Institute for Complex Systems (naXys), University of Namur, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Van Hieu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Igor Konnov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieu, D.V., Strodiot, J.J. & Muu, L.D. An Explicit Extragradient Algorithm for Solving Variational Inequalities. J Optim Theory Appl 185, 476–503 (2020). https://doi.org/10.1007/s10957-020-01661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01661-6

Keywords

Mathematics Subject Classification

Navigation