Skip to main content
Log in

Inertial Iterative Process for Fixed Points of Certain Quasi-nonexpansive Mappings

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

This paper deals with a general formalism which consists in approximating a point in a nonempty set \(S\), in a real Hilbert space \(H\), by a sequence \((x_n) \subset H\) such that \(x_{{n + 1}} : = {\user1{\mathcal{T}}}_{n} {\left( {x_{n} + \theta _{n} {\left( {x_{n} - x_{{n - 1}} } \right)}} \right)}\), where \({\left( {\theta _{n} } \right)} \subset \left[ {0,} \right.\left. 1 \right)\), \(x_0\) \(x_1\) are in \(H\) and \({\left( {{\user1{\mathcal{T}}}_{n} } \right)}_{{n \geqslant 0}}\) is a sequence included in a certain class of self-mappings on \(H\), such that every fixed point set of \({\user1{\mathcal{T}}}_{n}\) contains \(S\). This iteration method is inspired by an implicit discretization of the second order ‘heavy ball with friction’ dynamical system. Under suitable conditions on the parameters and the operators \({\left( {{\user1{\mathcal{T}}}_{n} } \right)}\), we prove that this scheme generates a sequence which converges weakly to an element of \(S\). In particular, by appropriate choices of \({\left( {{\user1{\mathcal{T}}}_{n} } \right)}\), this algorithm works for approximating common fixed points of infinite countable families of a wide class of operators which includes \(\alpha\)-averaged quasi-nonexpansive mappings for \(\alpha \in {\left( {0,\;1} \right)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202(1), 150–159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejer monotone methods in Hilbert space. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis, H.: Operateurs maximaux monotones. North Holland Math. Stud. 5, (1973)

  5. Browder, F.E.: Convergence of approximants to fixed points of non-expansive maps in Banach spaces. Arch. Rational Mech. Anal. 24, 82–90 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. Combettes, P.L.: Construction d’un point fixe commun d’une famille de contractions fermes (Construction of a common fixed point for firmly nonexpansive mappings). C. R. Acad. Sci. Paris Sér. I Math. 320(11), 1385–1390 (1995)

    MATH  MathSciNet  Google Scholar 

  7. Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradients projections. IEEE Trans. Image Process. 6(4), 493–506 (1997)

    Article  Google Scholar 

  8. Combettes, P.L., Pesquet, J.C.: Image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13, 1213–1222 (2004)

    Article  Google Scholar 

  9. Ciric, LJ.B., Ume, J.S., Khan, M.S.: On the convergence of the Ishikawa iterates to a common fixed point of two mappings. Arch. Math. (BRNO) 39, 123–127 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. (N.S.) 73, 957–961 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jules, F., Maingé, P.E.: Numerical approaches to a stationary solution of a second order dissipative dynamical system. Optimization 51(2), 235–255 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Lions, P.L.: Approximation de points fixes de contractions. C.R. Acad. Sci. Paris, Sér. I Math. A 284, 1357–1359 (1977)

    Google Scholar 

  13. Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using enlargement of a maximal monotone operator. Intern. J. Pure Appl. Math. 5(3), 283–299 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73, 591–597 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    Google Scholar 

  16. Vasin, V.V., Agreev, A.L.: Ill-posed problems with a priori information VSP. (1995)

  17. Wittman, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)

    Article  Google Scholar 

  18. Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25(7–8), 619–655 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Yamada, I., Ogura, N.: Adaptive projective subgradient method for asymptotic minimization of sequence of nonnegative convex functions. Numer. Funct. Anal. Optim. 25(7–8), 593–617 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Yamada, I., Slavakis, K., Yamada, K.: An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques. IEEE Trans. Signal Process. 50(5), 1091–1101 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Emile Maingé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maingé, PE. Inertial Iterative Process for Fixed Points of Certain Quasi-nonexpansive Mappings. Set-Valued Anal 15, 67–79 (2007). https://doi.org/10.1007/s11228-006-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-006-0027-3

Mathematics Subject Classifications (2000)

Key words

Navigation