Skip to main content
Log in

Emergent Behaviors of Lohe Tensor Flocks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a new aggregation model on the space of rank-m tensors with the same size, and study emergent dynamics of the proposed model. Our proposed new aggregation model is general enough to encompass Lohe type models such as the Kuramoto model, the Lohe sphere model and the Lohe matrix models for the ensemble of real rank-0, rank-1 and rank-2 tensors, respectively. In this regard, we call our proposed model as the Lohe tensor model for rank-m tensors with the same size. For emergent dynamics of the proposed model, we employ the ensemble diameter as a Lyapunov functional to derive a Riccati type differential inequality. As a direct application of these differential inequalities, we provide two sufficient frameworks leading to the emergent dynamics for homogeneous and heterogeneous ensembles in terms of system parameters and initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebron, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Aeyels, D., Rogge, J.: Stability of phase locking and existence of frequency in networks of globally coupled oscillators. Prog. Theor. Phys. 112, 921–941 (2004)

    Article  ADS  MATH  Google Scholar 

  3. Albi, G., Bellomo, N., Fermo, L., Ha, S.-Y., Kim, J., Pareschi, L., Poyato, D. and Soler, J.: Vehicular traffic, crowds and swarms: From kinetic theory and multiscale methods to applications and research perspectives. To appear in Math. Models Methods Appl. Sci

  4. Bellomo, N., Ha, S.-Y.: A quest toward a mathematical theory of the dynamics of swarms. Math. Models Methods Appl. Sci. 27, 745–770 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13, 1775–1786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bridgeman, J.C., Chubb, C.T.: Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A 50, 223001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bronski, J., Carty, T. and Simpson, S.: A matrix valued Kuramoto model. Archived as arXiv:1903.09223

  8. Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562 (1966)

    Article  ADS  Google Scholar 

  9. Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Choi, S.-H., Ha, S.-Y.: Emergent behaviors of quantum Lohe oscillators with all-to-all couplings. J. Nonlinear Sci. 25, 1257–1283 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Choi, S.-H., Ha, S.-Y.: Time-delayed interactions and synchronization of identical Lohe oscillators. Q. Appl. Math. 74, 297–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, S.-H., Ha, S.-Y.: Large-time dynamics of the asymptotic Lohe model with a small-time delay. J. Phys. A 48, 425101 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Choi, S.-H., Ha, S.-Y.: Quantum synchronization of the Schödinger–Lohe model. J. Phys. A 47, 355104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choi, S.-H., Ha, S.-Y.: Complete entrainment of Lohe oscillators under attractive and repulsive couplings. SIAM J. App. Dyn. 13, 1417–1441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54, 353–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Degond, P., Frouvelle, A., Merino-Aceituno, S., Trescases, A.: Quaternions in collective dynamics. Multiscale Model. Simul. 16, 28–77 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Degond, P., Frouvelle, A., Merino-Aceituno, S.: A new flocking model through body attitude coordination. Math. Models Methods Appl. Sci. 27, 1005–1049 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. DeVille, L.: Synchronization and stability for quantum Kuramoto. J. Stat. Phys. 174, 160–187 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dörfler, F., Bullo, F.: Exploring synchronization in complex oscillator networks. In: IEEE 51st Annual Conference on Decision and Control (CDC) (2012), pp. 7157–7170

  23. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM J. Appl. Dyn. Syst. 10, 1070–1099 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ha, S.-Y., Kim, D.: Emergent behavior of a second-order Lohe matrix model on the unitary group. J. Stat. Phys. 175, 904–931 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ha, S.-Y., Kim, H.W., Ryoo, S.W.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. 14, 1073–1091 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ha, S.-Y., Ko, D., Park, J., Zhang, X.: Collective synchronization of classical and quantum oscillators. EMS Surv. Math. Sci. 3, 209–267 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ha, S.-Y., Ko, D., Ryoo, S.W.: On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds. J. Stat. Phys. 172, 1427–1478 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ha, S.-Y., Ryoo, S.W.: On the emergence and orbital Stability of phase-locked states for the Lohe model. J. Stat. Phys 163, 411–439 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Verlag, New York (2012)

    Book  MATH  Google Scholar 

  31. Jaćimović, V., Crnkić, A.: Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere. Chaos 28, 083105 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer-Verlag, Berlin (1984)

    Book  MATH  Google Scholar 

  33. Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30, 420 (1975)

    Article  ADS  Google Scholar 

  34. Lohe, M.A.: Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization. J. Math. Phys. 60, 072701 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A 43, 465301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lohe, M.A.: Non-abelian Kuramoto model and synchronization. J. Phys. A 42, 395101 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Markdahl, J., Thunberg, J., Gonçalves, J.: Almost global consensus on the n-sphere. IEEE Trans. Autom. Control 63, 1664–1675 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249–266 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Mirollo, R., Strogatz, S.H.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)

    MATH  Google Scholar 

  43. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  44. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Thunberg, J., Markdahl, J., Bernard, F., Goncalves, J.: A lifting method for analyzing distributed synchronization on the unit sphere. Autom. J. IFAC 96, 253–258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8, 417–453 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7, 134–160 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Vicsek, T., Zefeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  ADS  Google Scholar 

  49. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

  50. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    Book  MATH  Google Scholar 

  51. Zhu, J.: Synchronization of Kuramoto model in a high-dimensional linear space. Phys. Lett. A 377, 2939–2943 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of S.-Y. Ha is supported by NRF-2017R1A2B2001864

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansol Park.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 4.4

Appendix A: Proof of Lemma 4.4

In this appendix, we provide a proof of Lemma 4.4.

(i) We use antisymmetric property (4.2) of \(A_i\) and \(A_j\) and exchange symmetry \(\alpha _{*0} \longleftrightarrow \alpha _{*1}\) to find

$$\begin{aligned} \begin{aligned} \mathcal {L}_{ij}&:= -[T_i]_{\alpha _{*0}} [A_j]_{\alpha _{*1}\alpha _{*0}} [{{\bar{T}}}_j]_{\alpha _{*1}} - [T_j]_{\alpha _{*0}} [A_i]_{\alpha _{*1}\alpha _{*0}} [{\bar{T}}_i]_{\alpha _{*1}} + [{{\bar{T}}}_j]_{\alpha _{*0}} [A_i]_{\alpha _{*0}\alpha _{*1}} [T_i]_{\alpha _{*1}} \\&\quad + [{{\bar{T}}}_i]_{\alpha _{*0}} [A_j]_{\alpha _{*0}\alpha _{*1}} [T_j]_{\alpha _{*1}} \\&=-[T_i]_{\alpha _{*1}} [A_j]_{\alpha _{*0}\alpha _{*1}} [{{\bar{T}}}_j]_{\alpha _{*0}} - [T_j]_{\alpha _{*1}} [A_i]_{\alpha _{*0}\alpha _{*1}} [{{\bar{T}}}_i]_{\alpha _{*0}} + [{{\bar{T}}}_j]_{\alpha _{*0}} [A_i]_{\alpha _{*0}\alpha _{*1}} [T_i]_{\alpha _{*1}} \\&\quad + [{{\bar{T}}}_i]_{\alpha _{*0}} [A_j]_{\alpha _{*0}\alpha _{*1}} [T_j]_{\alpha _{*1}} \\&= \Big ( [A_i]_{\alpha _{*0}\alpha _{*1}} - [A_j]_{\alpha _{*0}\alpha _{*1}} \Big ) [{{\bar{T}}}_j]_{\alpha _{*0}} [T_i]_{\alpha _{*1}} - \Big ( [A_i]_{\alpha _{*0}\alpha _{*1}} - [A_j]_{\alpha _{*0}\alpha _{*1}} \Big ) [{{\bar{T}}}_i]_{\alpha _{*0}} [T_j]_{\alpha _{*1}} \\&= [A_i-A_j]_{\alpha _{*0}\alpha _{*1}} \Big ( [{\bar{T}}_j]_{\alpha _{*0}} [T_i]_{\alpha _{*1}} - [{\bar{T}}_i]_{\alpha _{*0}} [T_j]_{\alpha _{*1}} \Big ). \end{aligned} \end{aligned}$$

This and (4.9) yield

$$\begin{aligned} \begin{aligned} |\mathcal {L}_{ij}|^2&=\left| \sum _{\alpha _{*0}, \alpha _{*1}} [A_i-A_j]_{\alpha _{*0}\alpha _{*1}}\left( \bar{[T_j]}_{\alpha _{*0}}[T_i]_{\alpha _{*1}}-\bar{[T_i]}_{\alpha _{*0}}[T_j]_{\alpha _{*1}}\right) \right| ^2\\&\le ||A_i-A_j||_F^2\sum _{\alpha _{*0}, \alpha _{*1}}\left| \bar{[T_j]}_{\alpha _{*0}}[T_i]_{\alpha _{*1}}-\bar{[T_i]}_{\alpha _{*0}}[T_j]_{\alpha _{*1}}\right| ^2\\&=||A_i-A_j||_F^2\sum _{\alpha _{*0}, \alpha _{*1}}\left| \bar{[T_j]}_{\alpha _{*0}}[T_i]_{\alpha _{*1}}-\bar{[T_j]}_{\alpha _{*0}}[T_j]_{\alpha _{*1}}+\bar{[T_j]}_{\alpha _{*0}}[T_j]_{\alpha _{*1}}-\bar{[T_i]}_{\alpha _{*0}}[T_j]_{\alpha _{*1}}\right| ^2\\&=||A_i-A_j||_F^2\sum _{\alpha _{*0}, \alpha _{*1}} \left| \bar{[T_j]}_{\alpha _{*0}}[T_i-T_j]_{\alpha _{*1}}+[\bar{T_j}-\bar{T_i}]_{\alpha _{*0}}[T_j]_{\alpha _{*1}} \right| ^2\\&\le 4||A_i-A_j||_F^2 \cdot ||T_i-T_j||_F^2 \cdot ||T_j||_F^2 = 4||A_i-A_j||_F^2 \cdot ||T_i-T_j||_F^2. \end{aligned} \end{aligned}$$

This implies

$$\begin{aligned} |\mathcal {L}|\le 2||A_i-A_j||_F \cdot ||T_i-T_j||_F \le 2D(A)D(T). \end{aligned}$$

(ii) Now, we estimate the term in the sigma notation.

$$\begin{aligned} \begin{aligned}&\big |\bar{[T_j]}_{\alpha _{*0}}[T_c]_{\alpha _{*i_*}}\bar{[T_i]}_{\alpha _{*1}}[T_i]_{\alpha _{*(1-i_*)}} -\bar{[T_j]}_{\alpha _{*0}}[T_i]_{\alpha _{*i_*}}\bar{[T_c]}_{\alpha _{*1}}[T_i]_{\alpha _{*(1-i_*)}}\\&\qquad +\bar{[T_i]}_{\alpha _{*0}}[T_c]_{\alpha _{*i_*}}\bar{[T_j]}_{\alpha _{*1}}[T_j]_{\alpha _{*(1-i_*)}} -\bar{[T_i]}_{\alpha _{*0}}[T_j]_{\alpha _{*i_*}}\bar{[T_c]}_{\alpha _{*1}}[T_j]_{\alpha _{*(1-i_*)}}\\&\qquad +{[T_j]}_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*i_*}}{[T_i]}_{\alpha _{*1}}\bar{[T_i]}_{\alpha _{*(1-i_*)}} -{[T_j]}_{\alpha _{*0}}\bar{[T_i]}_{\alpha _{*i_*}}{[T_c]}_{\alpha _{*1}}\bar{[T_i]}_{\alpha _{*(1-i_*)}}\\&\qquad +{[T_i]}_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*i_*}}{[T_j]}_{\alpha _{*1}}\bar{[T_j]}_{\alpha _{*(1-i_*)}} -{[T_i]}_{\alpha _{*0}}\bar{[T_j]}_{\alpha _{*i_*}}{[T_c]}_{\alpha _{*1}}\bar{[T_j]}_{\alpha _{*(1-i_*)}}\big |\\&\quad \le \big |-{1\over 2}\bar{[T_c]}_{\alpha _{*0}}[T_i-T_j]_{\alpha _{*i_*}}\overline{[T_i+T_j]}_{\alpha _{*1}}[T_i-T_j]_{\alpha _{*(1-i_*)}} \\&\qquad +{1\over 2}\bar{[T_c]}_{\alpha _{*0}}[T_i+T_j]_{\alpha _{*i_*}}\overline{[T_i-T_j]}_{\alpha _{*1}}[T_i-T_j]_{\alpha _{*(1-i_*)}}\\&\qquad +{1\over 2}\overline{[T_i-T_j]}_{\alpha _{*0}}[T_i-T_j]_{\alpha _{*i_*}}\overline{[T_i+T_j]}_{\alpha _{*1}}{[T_c]}_{\alpha _{*(1-i_*)}} \\&\quad -{1\over 2}\overline{[T_i-T_j]}_{\alpha _{*0}}[T_i+T_j]_{\alpha _{*i_*}}\overline{[T_i-T_j]}_{\alpha _{*1}}{[T_c]}_{\alpha _{*(1-i_*)}} \big |\\&\quad \le 2||T_i-T_j||_F^2 \cdot ||T_i+T_j||_F \cdot ||T_c||_F\\&\quad \le 4D(T)^2||T_i||_F \cdot ||T_c||_F. \end{aligned} \end{aligned}$$

We use the above estimate to see

$$\begin{aligned} \begin{aligned} \mathcal {M}&=\sum _{i_*\ne 0}\kappa _{i_*} \big ( \bar{[T_j]}_{\alpha _{*0}}[T_c]_{\alpha _{*i_*}}\bar{[T_i]}_{\alpha _{*1}}[T_i]_{\alpha _{*(1-i_*)}} -\bar{[T_j]}_{\alpha _{*0}}[T_i]_{\alpha _{*i_*}}\bar{[T_c]}_{\alpha _{*1}}[T_i]_{\alpha _{*(1-i_*)}}\\&\quad +\bar{[T_i]}_{\alpha _{*0}}[T_c]_{\alpha _{*i_*}}\bar{[T_j]}_{\alpha _{*1}}[T_j]_{\alpha _{*(1-i_*)}} -\bar{[T_i]}_{\alpha _{*0}}[T_j]_{\alpha _{*i_*}}\bar{[T_c]}_{\alpha _{*1}}[T_j]_{\alpha _{*(1-i_*)}}\\&\quad +{[T_j]}_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*i_*}}{[T_i]}_{\alpha _{*1}}\bar{[T_i]}_{\alpha _{*(1-i_*)}} -{[T_j]}_{\alpha _{*0}}\bar{[T_i]}_{\alpha _{*i_*}}{[T_c]}_{\alpha _{*1}}\bar{[T_i]}_{\alpha _{*(1-i_*)}}\\&\quad +{[T_i]}_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*i_*}}{[T_j]}_{\alpha _{*1}}\bar{[T_j]}_{\alpha _{*(1-i_*)}} -{[T_i]}_{\alpha _{*0}}\bar{[T_j]}_{\alpha _{*i_*}}{[T_c]}_{\alpha _{*1}}\bar{[T_j]}_{\alpha _{*(1-i_*)}} \big )\quad (:=\mathcal {J}_1)\\&\quad +\kappa _{0}\big ( \bar{[T_j]}_{\alpha _{*0}}[T_c]_{\alpha _{*0}}\bar{[T_i]}_{\alpha _{*1}}[T_i]_{\alpha _{*1}} -\bar{[T_j]}_{\alpha _{*0}}[T_i]_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*1}}[T_i]_{\alpha _{*1}}\\&\quad +\bar{[T_i]}_{\alpha _{*0}}[T_c]_{\alpha _{*0}}\bar{[T_j]}_{\alpha _{*1}}[T_j]_{\alpha _{*1}} -\bar{[T_i]}_{\alpha _{*0}}[T_j]_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*1}}[T_j]_{\alpha _{*1}}\\&\quad +{[T_j]}_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*0}}{[T_i]}_{\alpha _{*1}}\bar{[T_i]}_{\alpha _{*1}} -{[T_j]}_{\alpha _{*0}}\bar{[T_i]}_{\alpha _{*0}}{[T_c]}_{\alpha _{*1}}\bar{[T_i]}_{\alpha _{*1}}\\&\quad +{[T_i]}_{\alpha _{*0}}\bar{[T_c]}_{\alpha _{*0}}{[T_j]}_{\alpha _{*1}}\bar{[T_j]}_{\alpha _{*1}} -{[T_i]}_{\alpha _{*0}}\bar{[T_j]}_{\alpha _{*0}}{[T_c]}_{\alpha _{*1}}\bar{[T_j]}_{\alpha _{*1}} \big )\quad (:=\mathcal {J}_2) \end{aligned} \end{aligned}$$

Below, we estimate \(\mathcal {J}_1\) and \(\mathcal {J}_2\).

\(\bullet \) (Estimate of \(\mathcal {J}_1\)): By direct estimate, one has

$$\begin{aligned} |\mathcal {J}_1|\le 4D(T)^2||T_i||_F \cdot ||T_c||_F \sum _{i_*\ne 0}\kappa _{i_*} \end{aligned}$$

\(\bullet \) (Estimate of \(\mathcal {J}_2\)): Similarly, one has

$$\begin{aligned} {\mathcal {J}_2\over \kappa _0}&=\langle {T_j, T_c}\rangle _F \langle {T_i, T_i}\rangle _F -\langle {T_j, T_i}\rangle _F \langle {T_c, T_i}\rangle _F + \langle {T_i, T_c}\rangle _F \cdot \langle {T_j, T_j}\rangle _F - \langle {T_i, T_j}\rangle _F \cdot \langle {T_c, T_j}\rangle _F \\&\quad +\langle {T_c, T_j}\rangle _F \cdot \langle {T_i, T_i}\rangle _F - \langle {T_i, T_j}\rangle _F \cdot \langle {T_i, T_c}\rangle _F + \langle {T_c, T_i}\rangle _F \cdot \langle {T_j, T_j}\rangle _F -\langle {T_j, T_i}\rangle _F \cdot \langle T_j, T_c\rangle _F \\&=-\langle T_i, T_j \rangle _F (\langle {T_c, T_j}\rangle _F +\langle {T_i, T_c}\rangle _F)-\langle {T_j, T_i}\rangle _F (\langle {T_c, T_i}\rangle _F +\langle {T_j, T_c}\rangle _F )\\&\quad +\langle {T_i, T_i}\rangle _F (\langle {T_i, T_c}\rangle _F +\langle {T_j, T_c}\rangle _F +\langle {T_c, T_i}\rangle _F +\langle {T_c, T_j}\rangle _F )\\&=(\langle {T_i, T_i}\rangle _F -\langle {T_i, T_j}\rangle _F )(\langle {T_c, T_j}\rangle _F +\langle {T_i, T_c}\rangle _F )+(\langle {T_i, T_i}\rangle _F -\langle {T_j, T_i}\rangle _F )(\langle {T_c, T_i}\rangle _F +\langle {T_j, T_c}_F \rangle )\\&={1\over 2}||T_i-T_j||_F^2 \Big (4\langle {T_i, T_i}\rangle _F +\langle {T_c-T_j, T_j}\rangle _F +\langle {T_c-T_i, T_i}\rangle _F +\langle {T_j, T_c-T_j}\rangle _F +\langle {T_i, T_c-T_i}\rangle _F \Big ). \end{aligned}$$

Therefore, one has

$$\begin{aligned} \big |\mathcal {J}_2-2\kappa _0||T_i-T_j||_F^2 \cdot ||T_i||_F^2\big |\le {}4\kappa _0D(T)^3||T_i||_F. \end{aligned}$$

If we combine the above two estimates of \(\mathcal {J}_1\) and \(\mathcal {J}_2\), then we can obtain following estimate:

$$\begin{aligned} \big |\mathcal {M}-2\kappa _0||T_i-T_j||_F^2||T_i||_F^2\big |\le 4D(T)^2||T_i||_F \cdot ||T_c||_F \sum _{i_*\ne 0}\kappa _{i_*}+4\kappa _0D(T)^3||T_i||_F. \end{aligned}$$

Now, we use \(\Vert T_i \Vert _F = 1\) to get the desired estimate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Park, H. Emergent Behaviors of Lohe Tensor Flocks. J Stat Phys 178, 1268–1292 (2020). https://doi.org/10.1007/s10955-020-02505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02505-3

Keywords

Mathematics Subject Classification

Navigation