Skip to main content
Log in

Cluster and Virial Expansions for the Multi-species Tonks Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a mixture of non-overlapping rods of different lengths \(\ell _k\) moving in \(\mathbb {R}\) or \(\mathbb {Z}\). Our main result are necessary and sufficient convergence criteria for the expansion of the pressure in terms of the activities \(z_k\) and the densities \(\rho _k\). This provides an explicit example against which to test known cluster expansion criteria, and illustrates that for non-negative interactions, the virial expansion can converge in a domain much larger than the activity expansion. In addition, we give explicit formulas that generalize the well-known relation between non-overlapping rods and labelled rooted trees. We also prove that for certain choices of the activities, the system can undergo a condensation transition akin to that of the zero-range process. The key tool is a fixed point equation for the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The criterion (1) refers to the pressure-activity expansion \(p(\varvec{z})\). The convergence of the density-activity expansion \(\rho _k(\varvec{z})\) in general requires a strict inequality \(\sum _k|z_k|\exp ( a\ell _k) <a\). The same remark applies to the discrete system.

  2. This point of view focuses on qualitative features of the domain of convergence for objects of unbounded size (\(\ell _k\rightarrow \infty \)). A different question is about quantitative estimates on the radius of convergence for hard-sphere systems of bounded size, see e.g. [13].

References

  1. Bernardi, O.: Solution to a combinatorial puzzle arising from Mayer’s theory of cluster integrals. Sém. Lothar. Combin. 59, B59e (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bissacot, R., Fernández, R., Procacci, A.: On the convergence of cluster expansions for polymer gases. J. Stat. Phys. 139, 598–617 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Brydges, D., Marchetti, D.H.U.: On the virial series for a gas of particles with uniformly repulsive pairwise interaction. 2014. arXiv:1403.1621 [math-ph]

  4. Brydges, D.C.: Mayer expansions. News Bull. Int. Assoc. Math. Phys., 11–15 (April, 2011)

  5. Brydges, D.C., Imbrie, J.Z.: Branched polymers and dimensional reduction. Ann. Math. 2(158), 1019–1039 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brydges, D.C., Imbrie, J.Z.: Dimensional reduction formulas for branched polymer correlation functions. J. Stat. Phys. 110, 503–518 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Disertori, M., Giuliani, A.: The nematic phase of a system of long hard rods. Commun. Math. Phys. 323, 143–175 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Ehrenborg, R., Méndez, M.: A bijective proof of infinite variated Good’s inversion. Adv. Math. 103(2), 221–259 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A 38(19), R195 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Faris, W.G.: Combinatorics and cluster expansions. Probab. Surv. 7, 157–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  12. Fernández, R., Ferrari, P.A., Garcia, N.: Loss network representation of Peierls contours. Ann. Probab. 29, 902–937 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fernández, R., Procacci, A., Scoppola, B.: The analyticity region of the hard sphere gas. Improved bounds. J. Stat. Phys. 128, 1139–1143 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274, 123–140 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fisher, M.E.: On discontinuity of the pressure. Commun. Math. Phys. 26, 6–14 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fisher, M.E., Felderhof, B.U.: Phase transitions in one-dimensional cluster-interaction fluids. iA. Thermodynamics. Ann. Phys. 58, 176–216 (1970)

    Article  ADS  Google Scholar 

  17. Fritzsche, K., Grauert, H.: From Holomorphic Functions to Complex Manifolds. Graduate Texts in Mathematics, vol. 213. Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  18. Good, I.J.: Generalizations to several variables of Lagrange’s expansion, with applications to stochastic processes. Proc. Cambridge Philos. Soc. 56, 367–380 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Good, I.J.: The generalization of Lagrange’s expansion and the enumeration of trees. Proc. Cambridge Philos. Soc. 61, 499–517 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys. 22, 133–161 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  21. Haas, B.: Appearance of dust in fragmentations. Commun. Math. Sci. 2, 65–73 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hilton, P., Pedersen, J.: Catalan numbers, their generalization, and their uses. Math. Intell. 13, 64–75 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ioffe, D., Velenik, Y., Zahradník, M.: Entropy-driven phase transition in a polydisperse hard-rods lattice system. J. Stat. Phys. 122, 761–786 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Jansen, S., Tate, S.J., Tsagkarogiannis, D., Ueltschi, D.: Multispecies virial expansions. Commun. Math. Phys. 330, 801–817 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Joyce, G.S.: On the hard-hexagon model and the theory of modular functions. Philos. Trans. R Soc. Lond. Ser. A 325, 643–702 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Kafri, Y., Levine, E., Mukamel, D., Schütz, G.M., Török, J.: Criterion for phase separation in one-dimensional driven systems. Phys. Rev. Lett. 89, 035702 (2002)

    Article  ADS  Google Scholar 

  27. Lebowitz, J.L., Rowlinson, J.S.: Thermodynamic properties of mixtures of hard spheres. J. Chem. Phys. 41, 133–138 (1964)

    Article  ADS  Google Scholar 

  28. Moon, J.W.: Counting labelled trees. In: From Lectures Delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress. Vancouver, CanadianMathematical Congress, Montreal, QC (1970)

  29. Poghosyan, S., Ueltschi, D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50, 053509 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin Inc, New York (1969)

    MATH  Google Scholar 

  31. Sokal, A.D.: A ridiculously simple and explicit implicit function theorem. Sém. Lothar. Combin. 61, B61Ad (2009)

    MathSciNet  MATH  Google Scholar 

  32. Tate, S.J.: A solution to the combinatorial puzzle of Mayer’s virial expansion. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 2, 229–262 (2015)

  33. Tonks, L.: The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955–963 (1936)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

I am indebted to R. Fernández, S. J. Tate, D. Tsagkarogiannis and D. Ueltschi for many helpful discussions, and to A. van Enter for pointing out connections with the Fisher–Felderhof clusters. This work was completed during a stay at the Institute for Computational and Experimental Research in Mathematics (ICERM), Brown University, for the semester program “Phase Transitions and Emergent Properties.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, S. Cluster and Virial Expansions for the Multi-species Tonks Gas. J Stat Phys 161, 1299–1323 (2015). https://doi.org/10.1007/s10955-015-1367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1367-x

Keywords

Navigation