Skip to main content
Log in

Multispecies Virial Expansions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam A.: A physicist’s proof of the Lagrange–Good multivariable inversion formula. J. Phys. A 36, 9471–9477 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. de Bruijn N.G.: The Lagrange–Good inversion formula and its application to integral equations. J. Math. Anal. Appl. 92, 397–409 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baert S., Lebowitz J.L.: Convergence of fugacity expansion and bounds on molecular distributions for mixtures. J. Chem. Phys. 40, 3474–3478 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bergeron F., Labelle G., Leroux P.: Combinatorial Species and Tree-like Structures, Encyclopaedia of Mathematics and its Applications, Vol. 67. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  5. Born M., Fuchs K.: The statistical mechanics of condensing systems. Proc. R. Soc. A 166, 391 (1938)

    Article  ADS  Google Scholar 

  6. Ehrenborg R., Méndez M.: A bijective proof of infinite variated Good’s inversion. Adv. Math. 103, 221–259 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Faris W.G.: Combinatorics and cluster expansions. Probab. Surv. 17, 157–206 (2010)

    MathSciNet  Google Scholar 

  8. Faris W.G.: Biconnected graphs and the multivariate virial expansion. Markov Proc. Rel. Fields 18, 357–386 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Fuchs K.: The statistical mechanics of many component gases. Proc. R. Soc. Lond. A. 179, 408–432 (1942)

    Article  ADS  Google Scholar 

  10. Gessel I.M.: A combinatorial proof of the multivariable Lagrange inversion formula. J. Combin. Theory 45, 178–195 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Good I.J.: Generalizations to several variables of Lagrange’s expansion, with applications to stochastic processes. Proc. Cambridge Philos. Soc. 56, 367–380 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Good I.J.: The generalization of Lagrange’s expansion and the enumeration of trees. Proc. Cambridge Philos. Soc. 61, 499–517 (1965)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Harrison S.F., Mayer J.E.: The statistical mechanics of condensing systems. IV. J. Chem. Phys. 6, 101 (1938)

    Article  ADS  Google Scholar 

  14. Henderson D., Leonard P.J.: One- and two-fluid van der Waals theories of liquid mixtures, I. Hard sphere mixtures. Proc. Natl. Acad. Sci. USA 67, 1818–1823 (1970)

    Article  ADS  MATH  Google Scholar 

  15. Hill T.L.: Statistical Mechanics: Principles and Selected Applications. McGraw-Hill Series in Advanced Chemistry, New York (1956)

    MATH  Google Scholar 

  16. Jansen S.: Mayer and virial series at low temperature. J. Stat. Phys. 147, 678–706 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Lebowitz J.L., Penrose O.: Convergence of virial expansions. J. Math. Phys. 7, 841–847 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  18. Leroux, P.: Enumerative problems inspired by Mayer’s theory of cluster integrals. Electr. J. Combin. 11 (2004) (Research Paper 32)

  19. Lebowitz J.L., Rowlinson J.S.: Thermodynamic properties of mixtures of hard spheres. J. Chem. Phys. 41, 133 (1964)

    Article  ADS  Google Scholar 

  20. Mayer J.E.: The statistical mechanics of condensing systems. I. J. Chem. Phys. 5, 67 (1937)

    Article  ADS  MATH  Google Scholar 

  21. Mayer J.E.: Statistical mechanics of condensing systems V. Two-component systems. J. Phys. Chem. 43, 71–95 (1939)

    Article  Google Scholar 

  22. Mayer J.E., Ackermann P.G.: The statistical mechanics of condensing systems. II. J. Chem. Phys. 5, 74 (1937)

    Article  ADS  MATH  Google Scholar 

  23. Mayer J.E., Harrison S.F.: The statistical mechanics of condensing systems. III. J. Chem. Phys. 6, 87 (1938)

    Article  ADS  Google Scholar 

  24. Méndez M., Nava O.: Colored species, c-monoids, and plethysm. I. J. Combin. Theory Ser. A 64, 102–129 (1993)

    Article  MATH  Google Scholar 

  25. Morais T., Procacci A.: Continuous particles in the canonical ensemble as an abstract polymer gas. J. Stat. Phys. 151, 830–849 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Poghosyan S., Ueltschi D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50, 053509 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Pulvirenti E., Tsagkarogiannis D.: Cluster expansion in the canonical ensemble. Commun. Math. Phys. 316, 289–306 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Tate S.: Virial expansion bounds. J. Stat. Phys. 153, 325–338 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ueltschi D.: Cluster expansions and correlation functions. Moscow Math. J. 4, 511–522 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Uhlenbeck G.E., Kahn B.: On the theory of condensation. Physica 5, 399 (1938)

    Article  ADS  Google Scholar 

  31. Zeidler E.: Applied Functional Analysis, Applied Mathematical Sciences, vol. 109. Springer, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ueltschi.

Additional information

Communicated by H. Spohn

© 2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, S., Tate, S.J., Tsagkarogiannis, D. et al. Multispecies Virial Expansions. Commun. Math. Phys. 330, 801–817 (2014). https://doi.org/10.1007/s00220-014-2026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2026-9

Keywords

Navigation