Skip to main content
Log in

Analyticity for Classical Gasses via Recursion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a new criterion for a classical gas with a repulsive pair potential to exhibit uniqueness of the infinite volume Gibbs measure and analyticity of the pressure. Our improvement on the bound for analyticity is by a factor \(e^2\) over the classical cluster expansion approach and a factor e over the known limit of cluster expansion convergence. The criterion is based on a contractive property of a recursive computation of the density of a point process. The key ingredients in our proofs include an integral identity for the density of a Gibbs point process and an adaptation of the algorithmic correlation decay method from theoretical computer science. We also deduce from our results an improved bound for analyticity of the pressure as a function of the density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balister, P., Bollobás, B., Walters, M.: Continuum percolation with steps in the square or the disc. Random Struct. Algorithms 26(4), 392–403 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barker, J.A., Henderson, D.: What is ‘liquid’? Understanding the states of matter. Rev. Mod. Phys. 48(4), 587 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barvinok, A.: Combinatorics and Complexity of Partition Functions, vol. 9. Springer, New York (2016)

    Book  MATH  Google Scholar 

  4. Beneš, V., Hofer-Temmel, C., Last, G., Večeřa, J.: Decorrelation of a class of Gibbs particle processes and asymptotic properties of U-statistics. J. Appl. Probab. 57(3), 928–955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernard, E.P., Krauth, W.: Two-step melting in two dimensions: first-order liquid-hexatic transition. Phys. Rev. Lett. 107(15), 155704 (2011)

    Article  ADS  Google Scholar 

  6. Betsch, S., Last, G.: On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential. arXiv preprintarXiv:2108.06303 (2021)

  7. Dereudre, D.: Introduction to the theory of Gibbs point processes. In: Stochastic Geometry, pp. 181–229. Springer (2019)

  8. Durrett, R.: Probability: Theory and Examples, vol. 49. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  9. Engel, M., Anderson, J.A., Glotzer, S.C., Isobe, M., Bernard, E.P., Krauth, W.: Hard-disk equation of state: first-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E 87(4), 042134 (2013)

    Article  ADS  Google Scholar 

  10. Faris, W.G.: A connected graph identity and convergence of cluster expansions. J. Math. Phys. 49(11), 113302 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274(1), 123–140 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fernández, R., Procacci, A., Scoppola, B.: The analyticity region of the hard sphere gas. Improved bounds. J. Stat. Phys. 5, 1139–1143 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ginibre, J.: Rigorous lower bound on the compressibility of a classical system. Phys. Lett. A 24(4), 223–224 (1967)

    Article  ADS  Google Scholar 

  14. Godsil, C.D.: Matchings and walks in graphs. J. Graph Theory 5(3), 285–297 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Groeneveld, J.: Two theorems on classical many-particle systems. Phys. Letters 3, 50–51 (1962)

  16. Groeneveld, J.: Estimation Methods for Mayer’s Graphical Expansions, vol. 97. Holland-Breumelhof, Grote Wittenburgerstraat (1967)

  17. Helmuth, T., Perkins, W., Petti, S.: Correlation decay for hard spheres via Markov chains. Ann. Appl. Probab. to appear

  18. Hofer-Temmel, C.: Disagreement percolation for the hard-sphere model. Electron. J. Probab. 24, 1–22 (2019)

  19. Houdebert, P., Zass, A.: An explicit Dobrushin uniqueness region for Gibbs point processes with repulsive interactions. J. Appl. Probab. 59, 541–555 (2022)

  20. Jansen, S.: Cluster expansions for Gibbs point processes. Adv. Appl. Probab. 51(4), 1129–1178 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jansen, S., Kuna, T., Tsagkarogiannis, D.: Virial inversion and density functionals. arXiv preprintarXiv:1906.02322 (2019)

  22. Jenssen, M., Joos, F., Perkins, W.: On the hard sphere model and sphere packings in high dimensions. Forum Math. Sigma 7 (2019)

  23. Lebowitz, J., Mazel, A., Presutti, E.: Liquid-vapor phase transitions for systems with finite-range interactions. J. Stat. Phys. 94(5–6), 955–1025 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lebowitz, J., Penrose, O.: Convergence of virial expansions. J. Math. Phys. 5, 841–847 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 67–84. SIAM (2013)

  26. Lieb, E.: New method in the theory of imperfect gases and liquids. J. Math. Phys. 4(5), 671–678 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  27. Meeron, E.: Indirect exponential coupling in the classical many-body problems. Phys. Rev. 126(3), 883 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Meeron, E.: Bounds, successive approximations, and thermodynamic limits for distribution functions, and the question of phase transitions for classical systems with non-negative interactions. Phys. Rev. Lett. 25(3), 152 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  29. Meester, R., Roy, R.: Continuum Percolation, vol. 119. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  30. Nguyen, T.X., Fernández, R.: Convergence of cluster and virial expansions for repulsive classical gases. J. Stat. Phys. 179, 448–484 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Penrose, O.: Convergence of fugacity expansions for fluids and lattice gases. J. Math. Phys. 4(10), 1312–1320 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Peters, H., Regts, G.: On a conjecture of Sokal concerning roots of the independence polynomial. Mich. Math. J. 68(1), 33–55 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pulvirenti, E., Tsagkarogiannis, D.: Cluster expansion in the canonical ensemble. Commun. Math. Phys. 316(2), 289–306 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ramawadh, S., Tate, S.J.: Virial expansion bounds through tree partition schemes. arXiv preprintarXiv:1501.00509 (2015)

  35. Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improved mixing condition on the grid for counting and sampling independent sets. Probab. Theory Relat. Fields 156(1–2), 75–99 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ruelle, D.: Correlation functions of classical gases. Ann. Phys. 25, 109–120 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  38. Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118(5), 1151–1261 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Shao, S., Sun, Y.: Contraction: A unified perspective of correlation decay and zero-freeness of 2-spin systems. In: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

  40. Simon, B.: Basic Complex Analysis. American Mathematical Society (2015)

  41. Sinclair, A., Srivastava, P., Štefankovič, D., Yin, Y.: Spatial mixing and the connective constant: Optimal bounds. Probab. Theory Relat. Fields 168(1–2), 153–197 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sokal, A.D.: A personal list of unsolved problems concerning lattice gases and antiferromagnetic Potts models. Markov Processes Relat. Fields 7, 21–38 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Vera, J.C., Vigoda, E., Yang, L.: Improved bounds on the phase transition for the hard-core model in 2 dimensions. SIAM J. Discrete Math. 29(4), 1895–1915 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 140–149. ACM (2006)

  45. Widom, B.: Intermolecular forces and the nature of the liquid state. Science 157(3787), 375–382 (1967)

    Article  ADS  Google Scholar 

  46. Widom, B., Rowlinson, J.S.: New model for the study of liquid-vapor phase transitions. J. Chem. Phys. 52(4), 1670–1684 (1970)

    Article  ADS  Google Scholar 

  47. Yang, C.-N., Lee, T.-D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87(3), 404 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Tyler Helmuth, Sabine Jansen, Steffen Betsch, Günter Last, and the anonymous referees for many helpful comments on the paper. MM supported in part by NSF grant DMS-2137623. WP supported in part by NSF grants DMS-1847451 and CCF-1934915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will Perkins.

Ethics declarations

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by S. Chatterjee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelen, M., Perkins, W. Analyticity for Classical Gasses via Recursion. Commun. Math. Phys. 399, 367–388 (2023). https://doi.org/10.1007/s00220-022-04559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04559-8

Navigation