Skip to main content
Log in

Relation of a New Interpretation of Stochastic Differential Equations to Ito Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Stochastic differential equations (SDE) are widely used in modeling stochastic dynamics in literature. However, SDE alone is not enough to determine a unique process. A specified interpretation for stochastic integration is needed. Different interpretations specify different dynamics. Recently, a new interpretation of SDE is put forward by one of us. This interpretation has a built-in Boltzmann-Gibbs distribution and shows the existence of potential function for general processes, which reveals both local and global dynamics. Despite its powerful property, its relation with classical ones in arbitrary dimension remains obscure. In this paper, we will clarify such connection and derive the concise relation between the new interpretation and Ito process. We point out that the derived relation is experimentally testable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ao, P.: Potential in stochastic differential equations: novel construction. J. Phys. A, Math. Gen. 37(3), L25 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ao, P.: Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun. Theor. Phys. 49(5), 1073–1090 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ao, P., Galas, D., Hood, L., Yin, L., Zhu, X.: Towards predictive stochastic dynamical modeling of cancer genesis and progression. Interdiscipl. Sci. Comput. Life Sci. 2, 140–144 (2010)

    Article  Google Scholar 

  4. Ao, P., Galas, D., Hood, L., Zhu, X.: Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses 70(3), 678–684 (2008)

    Article  Google Scholar 

  5. Ao, P., Kwon, C., Qian, H.: On the existence of potential landscape in the evolution of complex systems. Complexity 12(4), 19–27 (2007)

    Article  MathSciNet  Google Scholar 

  6. Arnold, L.: Random Dynamical Systems. Springer, Berlin (2003)

    Google Scholar 

  7. Freidlin, M.: Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys. 117, 617–634 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Gardiner, C.W.: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  9. Hänggi, P.: On derivations and solutions of master equations and asymptotic representations. Z. Phys. B, Condens. Matter 30, 85–95 (1978)

    ADS  Google Scholar 

  10. Hottovy, S., Volpe, G., Wehr, J.: Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski-Kramers limit. J. Stat. Phys. 146, 762–773 (2012)

    Article  MATH  Google Scholar 

  11. Jiao, S., Wang, Y., Yuan, B., Ao, P.: Kinetics of Muller’s ratchet from adaptive landscape viewpoint. In: Systems Biology (ISB), 2011 IEEE International Conference, pp. 27–32 (2011)

  12. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  13. Kupferman, R., Pavliotis, G.A., Stuart, A.M.: Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E 70, 036120 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. Kwon, C., Ao, P., Thouless, D.J.: Structure of stochastic dynamics near fixed points. Proc. Natl. Acad. Sci. USA 102(37), 13029–13033 (2005)

    Article  ADS  Google Scholar 

  15. Kwon, C., Noh, J.D., Park, H.: Nonequilibrium fluctuations for linear diffusion dynamics. Phys. Rev. E 83, 061145 (2011)

    Article  ADS  Google Scholar 

  16. Lyons, T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mu, W.H., Ou-Yang, Z.C., Li, X.Q.: From chemical Langevin equations to Fokker–Planck equation: application of hodge decomposition and Klein–Kramers equation. Commun. Theor. Phys. 55(4), 602 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  18. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2010)

    Google Scholar 

  19. Qian, H.: Cellular biology in terms of stochastic nonlinear biochemical dynamics: emergent properties, isogenetic variations and chemical system inheritability. J. Stat. Phys. 141(6), 990–1013 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Shereshevskii, I.: On stochastic deformations of dynamical systems. J. Nonlinear Math. Phys. 17, 71–85 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. Smythe, J., Moss, F., McClintock, P.V.E.: Observation of a noise-induced phase transition with an analog simulator. Phys. Rev. Lett. 51, 1062–1065 (1983)

    Article  ADS  Google Scholar 

  22. Sussmann, H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6, 19–41 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsekov, R.: Stochastic equations for thermodynamics. J. Chem. Soc., Faraday Trans. 93(9), 1751–1753 (1997)

    Article  Google Scholar 

  24. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)

    Google Scholar 

  25. Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurements. Phys. Rev. Lett. 104(17), 170602 (2010)

    Article  ADS  Google Scholar 

  26. Wang, J., Xu, L., Wang, E.K.: Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA 105(34), 12271–12276 (2008)

    Article  ADS  Google Scholar 

  27. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36(5), 1560–1564 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yin, L., Ao, P.: Existence and construction of dynamical potential in nonequilibrium processes without detailed balance. J. Phys. A, Math. Gen. 39(27), 8593–8601 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Yuan, R., Ma, Y., Yuan, B., Ao, P.: Potential function in dynamical systems and the relation with Lyapunov function. In: 30th Chinese Control Conference (CCC), 2011, pp. 6573–6580 (2011)

  30. Zhou, D., Qian, H.: Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics. Phys. Rev. E 84, 031907 (2011)

    Article  ADS  Google Scholar 

  31. Zhu, X.M., Yin, L., Ao, P.: Limit cycle and conserved dynamics. Int. J. Mod. Phys. B 20, 817–827 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Zhu, X.M., Yin, L., Hood, L., Ao, P.: Calculating biological behaviors of epigenetic states in the phage λ life cycle. Funct. Integr. Genomics 4(3), 188–195 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude for the helpful discussions with Song Xu, Xinan Wang, Yian Ma, Ying Tang. This work was supported in part by the National 973 Project No. 2010CB529200 (P.A.); by the Natural Science Foundation of China No. NFSC91029738 (P.A.) and No. NFSC61073087 (R.Y., J.S. and B.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yuan or Ping Ao.

Appendices

Appendix A: Proof of Theorem 1

Proof

We only need to consider the difference between α-type and I-type processes (α=0), the difference in drift part is given by

$$ \bigl[\boldsymbol{f}\bigl(\boldsymbol{x}(t+\alpha\,\mathrm{d}{t}) \bigr) - \boldsymbol{f}\bigl(\boldsymbol{x} (t)\bigr)\bigr]\, \mathrm{d}{t} = \mathrm{O} \bigl( \boldsymbol{x}(t+\alpha\,\mathrm{d}{t}) - \boldsymbol{x}(t) \bigr )\,\mathrm{d}{t} = \mathrm{O}\bigl( \mathrm{d}{t}^{1.5}\bigr) = \mathrm{o}(\mathrm{d}{t}). $$
(21)

This means the difference in drift part is negligible. The difference in diffusion part of ith coordinate is given by

(22)
(23)
(24)
(25)

We can use interpretation of SDE over time interval t to t+α dt to get Eq. (23). Here dW(αt) is a short notation for change of Wiener Process over time α dt. Equation (24) is given by first order expansion. We get the last equality using the following facts

(26)

Here R 1(t) and R 2(t) are zero mean noise with standard deviation of order \(\mathrm{o}(\sqrt{\mathrm{d}{t}})\). These small noise will not harm the result and can be ignored according to the following theorem.

Theorem 3

The zero mean noise in dx with standard deviation of \(\mathrm{o}(\sqrt{\mathrm{d}{t}})\) can be ignored without influencing the result of stochastic integration.

Proof

Let us denote the noise term R(t). Consider the stochastic integration of the noise term over a time interval

(27)

We can find that X is a random variable with zero mean and zero variance (due to the fact that variance of R(t) is o(dt)). This means X goes to 0 by mean-square limit. □

Appendix B: Detailed Parameters of Examples

2.1 B.1 Example 1

The SDE for the I-type process is

$$ \mathrm{d}\boldsymbol{x}= -(\boldsymbol {D}+\boldsymbol{Q})\nabla\phi\,\mathrm {d}{t} + \boldsymbol{B}\,\mathrm{d}\boldsymbol{W}(t), \qquad \boldsymbol{B} \boldsymbol{B}^\tau=2\boldsymbol{D}. $$
(28)

Here

(29)

Here k is an integer vary from 1 to 10. The A-type process for Eq. (28) is the following I-type process:

(30)

where

$$ \varDelta\boldsymbol{f}= \left ( \begin{array}{c} k \\ 0 \\ \end{array} \right ). $$
(31)

2.2 B.2 Example 2

The SDE for the I-type process is

(32)

Here

(33)

It is easy to see that the above I-type process is the equivalent I-type process for the following A-type process with same B and different ϕ:

(34)

Here

$$ \phi' = \bigl(x^2+y^2\bigr)/2. $$
(35)

So its stationary distribution is

$$ \rho\propto\exp\bigl[-\bigl(x^2+y^2\bigr)/2 \bigr]. $$
(36)

This stationary distribution has only one minimum point at origin.

The A-type process for Eq. (32) is the following I-type process:

(37)

where

$$ \varDelta\boldsymbol{f}= \left ( \begin{array}{c} x \\ y \\ \end{array} \right ). $$
(38)

And its stationary distribution is

$$ \rho\propto\exp\bigl[ \log\bigl(x^2+y^2\bigr)- \bigl(x^2+y^2\bigr)/2 \bigr]. $$
(39)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Chen, T., Yuan, R. et al. Relation of a New Interpretation of Stochastic Differential Equations to Ito Process. J Stat Phys 148, 579–590 (2012). https://doi.org/10.1007/s10955-012-0532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0532-8

Keywords

Navigation