Skip to main content
Log in

Noise-Induced Drift in Stochastic Differential Equations with Arbitrary Friction and Diffusion in the Smoluchowski-Kramers Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the dynamics of systems with arbitrary friction and diffusion. These include, as a special case, systems for which friction and diffusion are connected by Einstein fluctuation-dissipation relation, e.g. Brownian motion. We study the limit where friction effects dominate the inertia, i.e. where the mass goes to zero (Smoluchowski-Kramers limit). Using the Itô stochastic integral convention, we show that the limiting effective Langevin equations has different drift fields depending on the relation between friction and diffusion. Alternatively, our results can be cast as different interpretations of stochastic integration in the limiting equation, which can be parametrized by α∈ℝ. Interestingly, in addition to the classical Itô (α=0), Stratonovich (α=0.5) and anti-Itô (α=1) integrals, we show that position-dependent α=α(x), and even stochastic integrals with α∉[0,1] arise. Our findings are supported by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)

    Google Scholar 

  2. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New York (1998)

    Google Scholar 

  3. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  4. Lyons, T.J., Caruana, M., Lévy, T.: Differential equations driven by rough paths. Lecture Notes in Mathematics, vol. 1908. Springer, Berlin (2007). Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard

    MATH  Google Scholar 

  5. Turelli, M.: Theor. Popul. Biol. 12, 140 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ao, P.: Commun. Theor. Phys. 49, 1073 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Gardiner, C.: Handbook of Stochastic Methods. Springer, Berlin (1985)

    Google Scholar 

  8. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)

    Google Scholar 

  9. Sussmann, H.: Ann. Probab., 19–41 (1978)

  10. Ermark, D.L., McCammon, J.A.: J. Chem. Phys. 69, 1352 (1978)

    Article  ADS  Google Scholar 

  11. Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: EPL (Europhys. Lett.) 54, 28 (2001)

    Article  ADS  Google Scholar 

  12. Lau, A.W.C., Lubensky, T.C.: Phys. Rev. E 76, 011123 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Phys. Rev. Lett. 104, 170602 (2010)

    Article  ADS  Google Scholar 

  14. Brettschneider, T., Volpe, G., Helden, L., Wehr, J., Bechinger, C.: Phys. Rev. E 83, 041113 (2011)

    Article  ADS  Google Scholar 

  15. Wehr, J.: University of Arizona (2011, in preparation)

  16. Ao, P., Kwon, C., Qian, H.: Complexity 12, 19 (2007)

    Article  MathSciNet  Google Scholar 

  17. Papanicolaou: In: AMS Seminar, Lecture Notes. Rensselaer Polytechnic Institute, Troy (1975).

    Google Scholar 

  18. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, Berlin (2008)

    MATH  Google Scholar 

  19. Schuss, Z.: Theory and Application of Stochastic Differential Equations. Wiley, New York (1980)

    Google Scholar 

  20. Pardoux, È., Veretennikov, A.: Ann. Probab. 29 (2001)

  21. Pardoux, È., Veretennikov, A.: Ann. Probab. 31 (2003)

  22. Pardoux, È., Veretennikov, A.: Ann. Probab. 33 (2005)

  23. Smoluchowski, M.: Phys. Z. 17, 557 (1916)

    ADS  Google Scholar 

  24. Kramers, H.: Physica 7, 284 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  26. Freidlin, M.: J. Stat. Phys. 117, 617 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Kupferman, R., Pavliotis, G.A., Stuart, A.M.: Phys. Rev. E 70, 036120 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  28. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience, New York (1953)

    Google Scholar 

  29. Lax, P.: Functional Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  30. Pavliotis, G., Stuart, A.: Multiscale Model. Simul. 4, 1 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sigurgeirsson, H., Stuart, A.M.: Phys. Fluids 14, 4352 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Hottovy.

Additional information

S.H. was supported by the VIGRE grant through the University of Arizona Applied Mathematics Program. J.W. was partially supported by the NSF grant DMS 1009508.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hottovy, S., Volpe, G. & Wehr, J. Noise-Induced Drift in Stochastic Differential Equations with Arbitrary Friction and Diffusion in the Smoluchowski-Kramers Limit. J Stat Phys 146, 762–773 (2012). https://doi.org/10.1007/s10955-012-0418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0418-9

Keywords

Navigation