Skip to main content
Log in

Experimental Measurement of Physical, Transport, and Optical Properties of Binary Mixtures of N-Hexyl Pyridinium Nitrate [HPy][NO3] Ionic Liquid with Water, Ethanol, and Acetonitrile at 298.15 K and 101 kPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We have conducted the first investigation of the thermophysical and transport properties of N-hexyl pyridinium nitrate [HPy][NO3], a room-temperature ionic liquid, in combination with water and the organic solvents, ethanol, and acetonitrile in the form of binary mixtures, at 298.15 K and 101 kPa. The densities, viscosities, and refractive indices of the binary mixtures were measured, and the experimental values were used to calculate the derived properties. To examine the volumetric properties of the binary mixtures, the apparent molar volumes were calculated from experimental densities and correlated using both the Redlich–Mayer and Pitzer models. It was found that the dielectric constant and polarity of the solvents had significant effects on the ion–solvent interactions. The viscosities and refractive indices of the mixtures are reported; the B-coefficient of the Jones–Dole equation, and the molar refractive indices determined using the Lorentz–Lorenz equation were calculated. Values of the standard deviations between the calculated and experimental data were determined using the linear least-squares method. Finally, the results were used to shed light on the structure making/breaking effect of ions in the binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gabriel, S., Weiner, J.: Ueber einige abkömmlinge des propylamins. Ber. Dtsch. Chem. Ges. 21(2), 2669–2679 (1888)

    Article  Google Scholar 

  2. Walden, P.: Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg) 1800 (1914)

  3. Chum, H.L., Koch, V., Miller, L., Osteryoung, R.: Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc. 97(11), 3264–3265 (1975)

    Article  CAS  Google Scholar 

  4. Gale, R., Osteryoung, R.: Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorg. Chem. 18(6), 1603–1605 (1979)

    Article  CAS  Google Scholar 

  5. Wilkes, J.S., Levisky, J.A., Wilson, R.A., Hussey, C.L.: Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 21(3), 1263–1264 (1982)

    Article  CAS  Google Scholar 

  6. Wu, B., Reddy, R.G., Rogers, R.D.: Novel ionic liquid thermal storage for solar thermal electric power systems. In: International Solar Energy Conference 2001, pp. 445–451. American Society of Mechanical Engineers (2001)

  7. Lapkin, A.A., Plucinski, P.K., Cutler, M.: Comparative assessment of technologies for extraction of artemisinin. J. Nat. Prod. 69(11), 1653–1664 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Jayakumar, M., Venkatesan, K., Srinivasan, T.: Electrochemical behavior of fission palladium in 1-butyl-3-methylimidazolium chloride. Electrochim. Acta 52(24), 7121–7127 (2007)

    Article  CAS  Google Scholar 

  9. Barghi, S., Adibi, M., Rashtchian, D.: An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: investigation of temperature fluctuations effects. J. Membrane Sci. 362(1–2), 346–352 (2010)

    Article  CAS  Google Scholar 

  10. Earle, M.J., Esperança, J.M., Gilea, M.A., Lopes, J.N.C., Rebelo, L.P., Magee, J.W., Seddon, K.R., Widegren, J.A.: The distillation and volatility of ionic liquids. Nature 439(7078), 831–834 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. In: Materials for Sustainable Energy: A Collection of Peer-reviewed Research and Review Articles from Nature Publishing Group. pp. 129–137. World Scientific, Singapore (2011)

  12. Kubisa, P.: Ionic liquids as solvents for polymerization processes—progress and challenges. Prog. Polym. Sci. 34(12), 1333–1347 (2009)

    Article  CAS  Google Scholar 

  13. Kubota, F., Shimobori, Y., Baba, Y., Koyanagi, Y., Shimojo, K., Kamiya, N., Goto, M.: Application of ionic liquids to extraction separation of rare earth metals with an effective diglycol amic acid extractant. J. Chem. Eng. Jpn. 1102280146–1102280146 (2011)

  14. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37(1), 123–150 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Rogers, R.D., Seddon, K.R.: Ionic liquids–solvents of the future? Science 302(5646), 792–793 (2003)

    Article  PubMed  Google Scholar 

  16. Wasserscheid, P., van Hal, R., Bösmann, A.: 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even ‘greener’ionic liquid. Green Chem. 4(4), 400–404 (2002)

    Article  CAS  Google Scholar 

  17. Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., Wu, G.: Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8(4), 325–327 (2006)

    Article  CAS  Google Scholar 

  18. Marrucho, I., Branco, L., Rebelo, L.: Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. 5, 527–546 (2014)

    Article  CAS  Google Scholar 

  19. Stoimenovski, J., MacFarlane, D.R., Bica, K., Rogers, R.D.: Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharmaceut. Res. 27(4), 521–526 (2010)

    Article  CAS  Google Scholar 

  20. Weaver, K.D., Kim, H.J., Sun, J., MacFarlane, D.R., Elliott, G.D.: Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications. Green Chem. 12(3), 507–513 (2010)

    Article  CAS  Google Scholar 

  21. Ha, S.H., Menchavez, R.N., Koo, Y.-M.: Reprocessing of spent nuclear waste using ionic liquids. Korean J. Chem. Eng. 27(5), 1360–1365 (2010)

    Article  CAS  Google Scholar 

  22. Sun, X., Luo, H., Dai, S.: Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 112(4), 2100–2128 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Audic, N., Clavier, H., Mauduit, M., Guillemin, J.-C.: An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. J. Am. Chem. Soc. 125(31), 9248–9249 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Dupont, D., Binnemans, K.: Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3: Eu3+ from lamp phosphor waste. Green Chem. 17(2), 856–868 (2015)

    Article  CAS  Google Scholar 

  25. Yang, F., Kubota, F., Baba, Y., Kamiya, N., Goto, M.: Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J. Hazard. Mater. 254, 79–88 (2013)

    Article  PubMed  Google Scholar 

  26. Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125(5), 1166–1167 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Wang, P., Zakeeruddin, S.M., Exnar, I., Grätzel, M.: High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 24, 2972–2973 (2002)

    Article  Google Scholar 

  28. Wang, P., Zakeeruddin, S.M., Moser, J.-E., Grätzel, M.: A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. B 107(48), 13280–13285 (2003)

    Article  CAS  Google Scholar 

  29. Ue, M., Takeda, M., Toriumi, A., Kominato, A., Hagiwara, R., Ito, Y.: Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J. Electrochem. Soc. 150(4), A499 (2003)

    Article  CAS  Google Scholar 

  30. Fujii, K., Fujimori, T., Takamuku, T., Kanzaki, R., Umebayashi, Y., Ishiguro, S.-I.: Conformational equilibrium of bis (trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J. Phys. Chem. B 110(16), 8179–8183 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Hao, Y., Peng, J., Hu, S., Li, J., Zhai, M.: Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations. Thermochim. Acta 501(1–2), 78–83 (2010)

    Article  CAS  Google Scholar 

  32. Jiang, W., Wang, Y., Voth, G.A.: Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J. Phys. Chem. B 111(18), 4812–4818 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558 (1993)

    Article  CAS  Google Scholar 

  34. Morrow, T.I., Maginn, E.J.: Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106(49), 12807–12813 (2002)

    Article  CAS  Google Scholar 

  35. Canongia Lopes, J.N., Deschamps, J., Pádua, A.A.: Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108(6), 2038–2047 (2004)

    Article  Google Scholar 

  36. Canongia Lopes, J.N., Pádua, A.A.: Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108(43), 16893–16898 (2004)

    Article  Google Scholar 

  37. Mirarabrazi, M., Stolarska, O., Smiglak, M., Robelin, C.: Solid–liquid equilibria for a pyrrolidinium-based common-cation ternary ionic liquid system, and for a pyridinium-based ternary reciprocal ionic liquid system: an experimental study and a thermodynamic model. Phys. Chem. Chem. Phys. 20(1), 637–657 (2018)

    Article  CAS  Google Scholar 

  38. Dai, J., Wang, H., Li, Y., Xiu, Z.-L.: Imidazolium ionic liquids-based salting-out extraction of 2, 3-butanediol from fermentation broths. Process Biochem. 71, 175–181 (2018)

    Article  CAS  Google Scholar 

  39. Ding, H., Ye, W., Wang, Y., Wang, X., Li, L., Liu, D., Gui, J., Song, C., Ji, N.: Process intensification of transesterification for biodiesel production from palm oil: microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids. Energy 144, 957–967 (2018)

    Article  CAS  Google Scholar 

  40. Heitz, M.P., Rupp, J.W.: Determining mushroom tyrosinase inhibition by imidazolium ionic liquids: a spectroscopic and molecular docking study. Int. J. Biol. Macromol. 107, 1971–1981 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Yadav, A., Guha, A., Pandey, A., Pal, M., Trivedi, S., Pandey, S.: Densities and dynamic viscosities of ionic liquids having 1-butyl-3-methylimidazolium cation with different anions and bis (trifluoromethylsulfonyl) imide anion with different cations in the temperature range (283.15 to 363.15) K. J. Chem. Thermodyn. 116, 67–75 (2018)

    Article  CAS  Google Scholar 

  42. Halayqa, M., Pobudkowska, A., Domańska, U., Zawadzki, M.: Studying of drug solubility in water and alcohols using drug-ammonium ionic liquid-compounds. Eur. J. Pharm. Sci. 111, 270–277 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. Harris, M.A., Heres, M.F., Coote, J., Wenda, A., Strehmel, V., Stein, G.E., Sangoro, J.: Ion transport and interfacial dynamics in disordered block copolymers of ammonium-based polymerized ionic liquids. Macromolecules 51(9), 3477–3486 (2018)

    Article  CAS  Google Scholar 

  44. Lepre, L., Pison, L., Siqueira, L., Ando, R., Gomes, M.C.: Improvement of carbon dioxide absorption by mixing poly(ethylene glycol) dimethyl ether with ammonium-based ionic liquids. Sep. Purif. Technol. 196, 10–19 (2018)

    Article  CAS  Google Scholar 

  45. Zafarani-Moattar, M.T., Shekaari, H., Hashemzadeh, T.: Effect of temperature and molar mass of polymer on liquid–liquid equilibria of aqueous two-phase system containing polyethylene glycol di-methyl ether and ammonium sulfate and application of this system in separation of lactic acid. Fluid Phase Equilib. 459, 85–93 (2018)

    Article  CAS  Google Scholar 

  46. Gómez, E., Calvar, N., Domínguez, Á., Macedo, E.A.: Thermal behavior and heat capacities of pyrrolidinium-based ionic liquids by DSC. Fluid Phase Equilib. 470, 51–59 (2018)

    Article  Google Scholar 

  47. González, E.J., Díaz, I., Gonzalez-Miquel, M., Rodríguez, M., Sueiras, A.: On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: experimental and computational analysis. Sep. Purif. Technol. 201, 214–222 (2018)

    Article  Google Scholar 

  48. Verdía, P., González, E.J., Moreno, D., Palomar, J., Tojo, E.: Deepening of the role of cation substituents on the extractive ability of pyridinium ionic liquids of N-compounds from fuels. ACS Sustain. Chem. Eng. 5(2), 2015–2025 (2017)

    Article  Google Scholar 

  49. Dong, Q., Muzny, C.D., Kazakov, A., Diky, V., Magee, J.W., Widegren, J.A., Chirico, R.D., Marsh, K.N., Frenkel, M.: ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J. Chem. Eng. Data 52(4), 1151–1159 (2007)

    Article  CAS  Google Scholar 

  50. Enayati, M., Mokhtarani, B., Sharifi, A., Anvari, S., Mirzaei, M.: Liquid–liquid extraction of toluene from alkane with pyridinium based ionic liquid ([BPy][NO3] and [HPy][NO3]) at 298.15 K and atmospheric pressure. J. Chem. Thermodyn. 102, 316–321 (2016)

    Article  CAS  Google Scholar 

  51. Zhang, L., Lu, X., Ye, D., Guo, Y., Fang, W.: Density and viscosity for binary mixtures of the ionic liquid 2, 2-diethyl-1,1,3, 3-tetramethylguanidinium ethyl sulfate with water, methanol, or ethanol. J. Chem. Eng. Data 61(3), 1023–1031 (2016)

    Article  CAS  Google Scholar 

  52. Gong, Y., Shen, C., Lu, Y., Meng, H., Li, C.: Viscosity and density measurements for six binary mixtures of water (methanol or ethanol) with an ionic liquid ([BMIM][DMP] or [EMIM][DMP]) at atmospheric pressure in the temperature range of (293.15 to 333.15) K. J. Chem. Eng. Data 57(1), 33–39 (2012)

    Article  CAS  Google Scholar 

  53. Galvão, A.C., Robazza, W.S., Bianchi, A.D., Matiello, J.A., Paludo, A.R., Thomas, R.: Solubility and thermodynamics of vitamin C in binary liquid mixtures involving water, methanol, ethanol and isopropanol at different temperatures. J. Chem. Thermodyn. 121, 8–16 (2018)

    Article  Google Scholar 

  54. Kestin, J., Sengers, J., Kamgar-Parsi, B., Sengers, J.L.: Thermophysical properties of fluid D2O. J. Phys. Chem. Ref. Data 13(2), 601–609 (1984)

    Article  CAS  Google Scholar 

  55. Lin, C.-P., Lai, G.-H., Tu, C.-H.: Liquid–liquid equilibria, density, refractive index, and solubility for mixtures of water + methanol + heptane + methylbenzene or + dimethyl carbonate at T = 298.15 K. J. Chem. Eng. Data 58(11), 3265–3274 (2013)

    Article  CAS  Google Scholar 

  56. Marsh, K.N.: Role of reference materials for the realization of physicochemical properties. Past, present, and future. Pure Appl. Chem. 72(10), 1809–1818 (2000)

    Article  CAS  Google Scholar 

  57. Urréjola, S., Sánchez, A., Hervello, M.N.F.: Refractive indices of lithium, magnesium, and copper(II) sulfates in ethanol−water solutions. J. Phys. Chem. Ref. Data 55(1), 482–487 (2010)

    Article  Google Scholar 

  58. Nikam, P.S., Shirsat, L.N., Hasan, M.: Density and viscosity studies of binary mixtures of acetonitrile with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 43(5), 732–737 (1998)

    Article  CAS  Google Scholar 

  59. Henni, A., Hromek, J.J., Tontiwachwuthikul, P., Chakma, A.: Volumetric properties and viscosities for aqueous AMP solutions from 25 °C to 70 °C. J. Chem. Eng. Data 48(3), 551–556 (2003)

    Article  CAS  Google Scholar 

  60. Mutalik, V., Manjeshwar, L.S., Sairam, M., Aminabhavi, T.M.: Excess molar volumes, deviations in viscosity and refractive index of the binary mixtures of mesitylene with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at 298.15, 303.15, and 308.15 K. J. Mol. Liq. 129(3), 147–154 (2006)

    Article  CAS  Google Scholar 

  61. Papanastasiou, G.E., Papoutsis, A.D., Kokkinidis, G.I.: Physical behavior of some reaction media. Density, viscosity, dielectric constant, and refractive index changes of ethanol–dioxane mixtures at several temperatures. J. Chem. Eng. Data 32(3), 377–381 (1987)

    Article  CAS  Google Scholar 

  62. Shekaari, H., Zafarani-Moattar, M.T., Mirheydari, S.N.: Density, viscosity, speed of sound, and refractive index of a ternary solution of aspirin, 1-butyl-3-methylimidazolium bromide, and acetonitrile at different temperatures T = (288.15 to 318.15) K. J. Chem. Eng. Data 60(6), 1572–1583 (2015)

    Article  CAS  Google Scholar 

  63. Moumouzias, G., Panopoulos, D.K., Ritzoulis, G.: Excess properties of the binary liquid system propylene carbonate + acetonitrile. J. Chem. Eng. Data 36(1), 20–23 (1991)

    Article  CAS  Google Scholar 

  64. Iloukhani, H., Almasi, M.: Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: experimental results and application of the Prigogine–Flory–Patterson theory. Thermochim. Acta 495(1–2), 139–148 (2009)

    Article  CAS  Google Scholar 

  65. Aminabhavi, T.M., Gopalakrishna, B.: Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. J. Chem. Eng. Data 40(4), 856–861 (1995)

    Article  CAS  Google Scholar 

  66. Zafarani-Moattar, M.T., Shekaari, H.: Volumetric and compressibility behaviour of ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate and tetrabutylammonium hexafluorophosphate in organic solvents at T = 298.15 K. J. Chem. Thermodyn. 38(5), 624–633 (2006)

    Article  CAS  Google Scholar 

  67. Redlich, O., Meyer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64(3), 221–227 (1964)

    Article  CAS  Google Scholar 

  68. Rogers, P., Pitzer, K.S.: Volumetric properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 11(1), 15–81 (1982)

    Article  CAS  Google Scholar 

  69. Shekaari, H., Zafarani-Moattar, M.T.: Volumetric properties of the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in organic solvents at T = 298.15 K. Int. J. Thermophys. 29(2), 534–545 (2008)

    Article  CAS  Google Scholar 

  70. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51(10), 2950–2964 (1929)

    Article  CAS  Google Scholar 

  71. Sah, R.S., Sinha, B., Roy, M.N.: Study of the solution properties of ternary mixtures of 1, 3-dioxolane (1), diethyl ether (2), and n-amyl alcohol (3) and the corresponding binary mixtures by density, viscosity, refractivity, and ultrasonic speed measurements at 298.15 K. J. Chem. Eng. Data 55(10), 4536–4540 (2010)

    Article  CAS  Google Scholar 

  72. Ranjbar, S., Fakhri, K., Ghasemi, J.B.: Densities and viscosities of (1-propanol + 1, 2-dichloroethane), (1-propanol + benzaldehyde),(benzaldehyde + 1, 2-dichloroethane), and (1-propanol + 1, 2-dichloroethane + benzaldehyde) mixtures from T = 288.15 K to 313.15 K. J. Chem. Eng. Data 54(12), 3284–3290 (2009)

    Article  CAS  Google Scholar 

  73. Mohammadi, M.D., Hamzehloo, M.: Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15–318.15) K and ambient pressure. Fluid Phase Equilib. 483, 14–30 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Doust Mohammadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

NMR results are available in SI. Supplementary file1 (DOCX 1485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doust Mohammadi, M., Hamzehloo, M. & Abdullah, H.Y. Experimental Measurement of Physical, Transport, and Optical Properties of Binary Mixtures of N-Hexyl Pyridinium Nitrate [HPy][NO3] Ionic Liquid with Water, Ethanol, and Acetonitrile at 298.15 K and 101 kPa. J Solution Chem 50, 576–590 (2021). https://doi.org/10.1007/s10953-021-01078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01078-3

Keywords

Navigation