Skip to main content
Log in

Solubility Modeling of the Binary Systems Fe(NO3)3–H2O, Co(NO3)2–H2O and the Ternary System Fe(NO3)3–Co(NO3)2–H2O with the Extended Universal Quasichemical (UNIQUAC) Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubility modeling in the binary system Fe(NO3)3–H2O, Co(NO3)2–H2O and the ternary system Fe(NO3)3–Co(NO3)2–H2O is presented. The extended UNIQUAC model was applied to the thermodynamic assessment of the investigated systems. The model parameters obtained were regressed simultaneously using the available databank but with more experimental points, recently published in the open literature. A revision of previously published parameters for the cobalt ion and new parameters for the iron(III) nitrate system are presented. Based on this set of parameters, the equilibrium constants of hydrates are determined. The model represents the experimental data with good accuracy from the freezing point region to the boiling points of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A D–H :

Debye–Hückel parameter (kg1/2·mol−1/2)

K :

Equilibrium constant

A :

Activity

A, B, C, D and E :

Parameters of Eq. 22

aq:

Aqueous

b :

Debye–Hückel parameter (kg1/2·mol−1/2)

I :

Ionic strength based on molality

m :

Molality (mol·kg−1 H2O)

p :

Pressure (kPa)

q :

Surface area

R :

Gas constant (J·mol−1·K−1)

r :

Volume parameter

T :

Temperature (K)

u, u 0 u t :

UNIQUAC interaction parameters

x :

Mole fraction

\( M_{w} \) :

Molecular weight of water (kg·mol−1)

n :

Mole number

\( \gamma \) :

Activity coefficient

∞:

Infinite dilution

0:

Standard state

*:

Asymmetrical

ex:

Excess

i :

Index

References

  1. Slick, P.I.: In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, vol. 2, pp. 189–241. North Holland, New York (1980)

    Google Scholar 

  2. Kulilowski, J., Lesniewski, A.: Properties of Ni–Zn ferrites for magnetic heads: technical possibilities and limitations. J. Magn. Mater. 19, 117–119 (1980)

    Article  Google Scholar 

  3. Brockner, W., Ehrhardt, C., Gjikaj, M.: Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochim. Acta 456, 64–68 (2007)

    Article  CAS  Google Scholar 

  4. Iliuta, M., Thomsen, K., Rasmussen, P.: Modeling of heavy metal salt solubility using the extended UNIQUAC model. AIChE J. 48, 2664–2689 (2002)

    Article  CAS  Google Scholar 

  5. Thomsen, K., Rasmussen, P., Gani, R.: Correlation and prediction of thermal properties and phase behavior for a class of electrolyte systems. Chem. Eng. Sci. 51, 1787–1802 (1996)

    Article  Google Scholar 

  6. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  7. Maurer, G., Prausnitz, J.M.: On the derivation and extension of the UNIQUAC equation. Fluid Phase Equilib. 2, 91–99 (1978)

    Article  CAS  Google Scholar 

  8. Sander, B., Fredenslund, A., Rasmussen, P.: Calculation of vapour–liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1171–1183 (1986)

    Article  CAS  Google Scholar 

  9. El Goundali, B., Kaddami, M.: Système ternaire: H2O–Fe(NO3)3–Co(NO3)2: Isotherme: 30°C. C. R. Seances Chim. 9, 1488–1492 (2006)

    Article  Google Scholar 

  10. El Goundali, B., Kaddami, M.: The ternary system: H2O–Fe(NO3)3–Co(NO3)2 isotherms −15 and −25 °C. J. Alloys Compd. 460, 544–548 (2008)

    Article  CAS  Google Scholar 

  11. El Goundali, B., Kaddami, M.: The ternary system H2O–Fe(NO3)3–Co(NO3)2 isotherms 0 and 15 °C. Fluid Phase Equil. 260, 295–299 (2007)

    Article  Google Scholar 

  12. http://www.cere.dtu.dk/Expertise/Data-for-aqueous-salt-solutions. Accessed 1 March 2016

  13. Malquori, G.: Il sistema Fe(NO3)3–KNO3–H2O a 25°. Atti Della Reale Accademia Nazionale Dei Lincei 5, 1000–1003 (1927)

    CAS  Google Scholar 

  14. Zaslavskii, A., Ravdin, I., Ya, A.: Joint solubility of aluminum, sodium, potassium and iron nitrates in the prescence of aqueous nitric acid. III: The system Al(NO3)3–Fe(NO3)3–H2O. Zh. Obshch. Khim. 7, 1948–1958 (1937)

    Google Scholar 

  15. Jones, H.C., Getman, F.H.: On the nature of concentrated solutions of electrolytes. Hydrates in solution. Am. Chem. J. 31, 303–359 (1904)

    Google Scholar 

  16. Jones, H.C., Getman, F.H., Bassett, H.P., McMaster, L.: Hydrates in Aqueous Solution: Evidence for the Existence of Hydrates in Solution. Their Approximate Composition and Certain Spectroscopic Investigation Bearing upon the Hydrate Problem. Carnegie Institution of Washington (1907)

  17. Robinson, R.A., Wilson, J.M., Aylin, H.S.: The activity coefficients of some bivalent metal nitrates in aqueous solution at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. 64, 1469–1471 (1942)

    Article  CAS  Google Scholar 

  18. Robinson, R.A., Brown, J.B.: The constitution of cobalt chloride in aqueous solutions. Trans. R. Soc. N. Z. 77, 1–9 (1948)

    CAS  Google Scholar 

  19. Sadowska, T., Libuś, W.: Thermodynamic properties and solution equilibria of aqueous bivalent transition metal nitrates and magnesium nitrate. J. Solution Chem. 11, 457–468 (1982)

    Article  CAS  Google Scholar 

  20. Goldberg, R.N., Nuttall, R.L., Staples, B.R.: Evaluated activity and osmotic coefficients for aqueous solutions: iron chloride and the bi-univalent compounds of nickel and cobalt. J. Phys. Chem. Ref. Data 8, 924–1003 (1979)

    Google Scholar 

  21. Arrad, M., Kaddami, M., Maous, J., Thomsen, K.: Modeling the binary system Mn(NO3)2–H2O with the extended universal quasichemical (UNIQUAC) model. Fluid Phase Equil. 397, 126–130 (2015)

    Article  CAS  Google Scholar 

  22. Druzhinin, I.G., Kondrat’eva, N.G.: The cobalt sulphate–cobalt nitrate–urea water system at 25 °C. Russ. J. Inorg. Chem. 11, 1506–1509 (1966)

    Google Scholar 

  23. Kondrat’eva, N.G., Beskov, S.D.: Solubility in the cobalt nitrate–cobalt sulphate–urea–water system at 40 °C Russ. J. Inorg. Chem. 15, 1558–1560 (1970)

    Google Scholar 

  24. Wilcox, K.W., Bailey, C.: Complex formation amongst the nitrates. Part I. The ternary system copper nitrate–cobalt nitrate–water. J. Chem. Soc. 1927, 150–153 (1927)

    Article  Google Scholar 

  25. Kondrat’eva, N.G., Druzhinin, I.G.: Solubility in the ternary systems of cobalt nitrate or sulfate in aqueous urea solutions at 25 °C. Uch. Zap. Mosk. Obl. Pedagog. Inst. 193, 151–161 (1968)

    Google Scholar 

  26. Funk, R.: Über die Löslichkeit einiger Metallnitrate. Z. Anorg. Chem. 20, 393–418 (1899)

    Article  CAS  Google Scholar 

  27. Thomsen, K.: Aqueous electrolytes, model parameters and process simulation. PhD thesis, Technical University of Denmark (1997)

  28. Malquori, G.: The system ferric nitrate–nitric acid–water at 25. Atti della Accademia Nazionale dei Lincei 9, 324–325 (1929)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Arrad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrad, M., Kaddami, M., Goundali, B.E. et al. Solubility Modeling of the Binary Systems Fe(NO3)3–H2O, Co(NO3)2–H2O and the Ternary System Fe(NO3)3–Co(NO3)2–H2O with the Extended Universal Quasichemical (UNIQUAC) Model. J Solution Chem 45, 534–545 (2016). https://doi.org/10.1007/s10953-016-0457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0457-y

Keywords

Navigation