Skip to main content
Log in

Solubility Modeling of the Systems Ni(NO3)2–H2O and Fe(NO3)3–Ni(NO3)2–H2O with the Extended Universal Quasichemical (UNIQUAC) Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic modeling of the binary systems Ni(NO3)2–H2O and Ni(NO3)2–H2O and of the ternary system of Fe(NO3)3–Ni(NO3)2–H2O along the 30 °C isotherm are presented. The extended UNIQUAC model was applied for the thermodynamic assessment of the investigated systems, the model parameters were regressed simultaneously using the available databank but with additional experimental data recently published in the open literature. A revision for previously published parameters for the nickel ion, new parameters for the iron(III) nitrate system, and interaction parameters for the Ni2+–Fe3+ interaction are presented. Based on this set of parameters, the equilibrium constants of hydrates were determined. The model represents the experimental data with good accuracy from the freezing point region to the boiling points of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Debye–Hückel parameter (kg1/2·mol−1/2)

K :

Equilibrium constant

a :

Activity

A, B, C, D and E :

Parameters of Eq. 12

aq:

Aqueous

B :

Debye–Hückel parameter (kg1/2·mol−1/2)

I :

Ionic strength based on molality

m :

Molality (mol·kg−1 H2O)

p :

Pressure (kPa)

q :

Surface area

R :

Gas constant (J·mol−1·K−1)

r :

Volume parameter

T :

Temperature (K)

u, u 0, u T :

UNIQUAC interaction parameters

x :

Mole fraction

M w :

Molecular weight of water (kg·mol−1)

n :

Mole number

γ :

Activity coefficient

∞:

Infinite dilution

0:

Standard state

*:

Asymmetrical

E:

Excess

I:

Index

References

  1. Slick, P.I.: Ferrites for non-microwave applications. In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, pp. 189–241. North Holland, New York (1980)

    Google Scholar 

  2. Kulilowski, J., Lesniewski, A.: Properties of Ni–Zn ferrites for magnetic heads: technical possibilities and limitations. J. Magn. Mater. 19, 117–119 (1980)

    Article  Google Scholar 

  3. Brockner, W., Ehrhardt, C., Gjikaj, M.: Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochim. Acta 456, 64–68 (2007)

    Article  CAS  Google Scholar 

  4. Iliuta, M., Thomsen, K., Rasmussen, P.: Modeling of heavy metal salt solubility using the extended UNIQUAC model. AIChE J. 48, 2664–2689 (2002)

    Article  CAS  Google Scholar 

  5. Thomsen, K., Rasmussen, P., Gani, R.: Correlation and prediction of thermal properties and phase behavior for a class of electrolyte systems. Chem. Eng. Sci. 51, 1787–1802 (1996)

    Article  Google Scholar 

  6. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  7. Maurer, G., Prausnitz, J.M.: On the derivation and extension of the UNIQUAC equation. Fluid Phase Equilib. 2, 91–99 (1978)

    Article  CAS  Google Scholar 

  8. Sander, B., Fredenslund, A., Rasmussen, P.: Calculation of vapour–liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1171–1183 (1986)

    Article  CAS  Google Scholar 

  9. http://www.cere.dtu.dk/Expertise/Data-for-aqueous-salt-solutions (2017). Accessed 26 March 2017

  10. El Goundali, B., Kaddami, M.: H2O–Fe(NO3)3–Ni(NO3)2 ternary system isotherms at 0 and 30°C. Fluid Phase Equilib. 306, 175–180 (2011)

    Article  CAS  Google Scholar 

  11. Sieverts, A., Schreiner, L.: Das binare System Ni(NO3)2–H2O und die 25°;-Isotherme des ternaren Systems Ni(NO3)2–HNO3–H2O. Z. Anorg. Chem. 212, 105–112 (1933)

    Google Scholar 

  12. Funk, R.: Über die Löslichkeit einiger Metallnitrate. Z. Anorg. Chem. 20, 393–418 (1899)

    Article  CAS  Google Scholar 

  13. Jones, H.C., Getman, F.H.: On the nature of concentrated solutions of electrolytes. Hydrates in solution. Am. Chem. J. 31, 303–359 (1904)

    Google Scholar 

  14. Jones, H.C., Getman, F.H., Bassett, H.P., McMaster, L.: Hydrates in aqueous solution: evidence for the existence of hydrates in solution. Their approximate composition and certain spectroscopic investigation bearing upon the hydrate problem. Carnegie Institution of Washington, Washington (1907)

    Google Scholar 

  15. Andreeva, T.A., Pozharskaya, S.S., Golovanova, T.G.: Properties of solutions of beryllium–nickel nitrate and calcium–nickel nitrate at 25°. Russ. J. Inorg. Chem. 18, 1638–1640 (1973)

    Google Scholar 

  16. Thomsen, K.: Aqueous electrolytes, model parameters and process simulation. PhD Thesis, Technical University of Denmark (1997)

  17. Arrad, M., Kaddami, M., El Goundali, B., Thomsen, K.: Solubility modeling of the binary systems Fe(NO3)3–H2O, Co(NO3)2–H2O and the ternary Fe(NO3)3–Co(NO3)2–H2O with the extended universal quasichemical (UNIQUAC) model. J. Solution Chem. 45, 534–545 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Arrad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrad, M., Kaddami, M., El Goundali, B. et al. Solubility Modeling of the Systems Ni(NO3)2–H2O and Fe(NO3)3–Ni(NO3)2–H2O with the Extended Universal Quasichemical (UNIQUAC) Model. J Solution Chem 46, 1220–1229 (2017). https://doi.org/10.1007/s10953-017-0639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0639-2

Keywords

Navigation