Skip to main content
Log in

Solubility Prediction of FeSO4·7H2O–ZnSO4·xH2O–H2O (x = 6, 7) System Using the Pitzer Ion-Interaction Model

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The component solubilities of FeSO4·7H2O–ZnSO4·xH2O–H2O (x = 6, 7) systems at 25 and 40°C were calculated using Pitzer’s ion-interaction model and its Harvie–Weare extension. The calculated results of FeSO4 · 7H2O–ZnSO4 · xH2O–H2O (x = 6, 7) systems are in good agreement with the experimental data both at 25 and 40°C. The model can be extended to a wider range of temperatures for single- or multi-component systems using temperature-dependent binary parameters, providing an alternative approach for the prediction of electrolyte solubilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. M. Kobylin, H. Sippola and P.A. Taskinen, Calphad 35, 499 (2011). https://doi.org/10.1016/j.calphad.2011.08.005

    Article  CAS  Google Scholar 

  2. P. M. Kobylin, H. Sippola and P.A. Taskinen, Calphad 38, 185 (2012). https://doi.org/10.1016/j.calphad.2012.06.011

    Article  CAS  Google Scholar 

  3. T. Vielma, J. Salminen and U. Lassi, Calphad 60, 126 (2018). https://doi.org/10.1016/j.calphad.2017.12.006

    Article  CAS  Google Scholar 

  4. D. P. Tao, Thermochim. Acta 363, 105 (2000). https://doi.org/10.1016/S0040-6031(00)00603-1

    Article  CAS  Google Scholar 

  5. K. S. Pitzer, J. Phys. Chem. 4, 249 (1973). https://doi.org/10.1021/j100621a026

    Article  Google Scholar 

  6. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions (CRC Press, Ann Arbor, 1991).

    Google Scholar 

  7. C. E. Harvie and J. H. Weare, Geochim. Cosmochim. Acta 44, 981 (1980). https://doi.org/10.1016/0016-7037(80)90287-2

    Article  CAS  Google Scholar 

  8. C. E. Harvie, H. P. Eugste, and J. H. Wear, Geochim. Cosmochim. Acta 46, 1603 (1982). https://doi.org/10.1016/0016-7037(82)90317-9

    Article  CAS  Google Scholar 

  9. C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984). https://doi.org/10.1016/0016-7037(84)90098-X

    Article  CAS  Google Scholar 

  10. A. S. Malyutin, N. A. Kovalenko, and I. A. Uspenskaya, Russ. J. Inorg. Chem. 65, 781 (2020). https://doi.org/10.1134/S0036023620050149

    Article  CAS  Google Scholar 

  11. M. A. Urusova and V. M. Valyashko, Russ. J. Inorg. Chem. 65, 1085 (2020). https://doi.org/10.1134/S003602362006025X

    Article  CAS  Google Scholar 

  12. X. P. Zhang, L. R. Zhao, S. Y. Zhou, et al., Russ. J. Inorg. Chem. 65, 2062 (2020). https://doi.org/10.1134/S0036023620140089

    Article  Google Scholar 

  13. Y. Li, P. Song, S. Xia, et al., Calphad 24, 295 (2000). https://doi.org/10.1016/S0364-5916(01)00006-2

    Article  CAS  Google Scholar 

  14. K. S. Pitzer and G. Mayorga, J. Solution Chem. 3, 539 (1974). https://doi.org/10.1007/BF00648138

    Article  CAS  Google Scholar 

  15. E. J. Reardon and R. D. Beckie, Geochim. Cosmochim. Acta 51, 2355 (1987). https://doi.org/10.1016/0016-7037(87)90290-0

    Article  CAS  Google Scholar 

  16. B. Hu, P. S. Song, Y. H. Li, et al., Calphad 31, 541 (2007). https://doi.org/10.1016/j.calphad.2007.03.002

    Article  CAS  Google Scholar 

  17. F. Wang and B. Hu, Russ. J. Inorg. Chem. 55, 441 (2010). https://doi.org/10.1134/S0036023610030253

    Article  CAS  Google Scholar 

  18. C. Baiarew and V. Karaivanova, Krist. Tech. 10, 1101 (1975). https://doi.org/10.1002/crat.19750101102

    Article  Google Scholar 

  19. V. C. Balarew, Z. Anorg. Allg. Chem. 422, 283 (1976). https://doi.org/10.1002/zaac.19764220313

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 51804146, 51964029), the National key R & D plan of China (Grant no. 2018YFC1900402), the Applied Basic Research Project of Yunnan Province in China (no. 202001AT070079), and the Analysis Testing Fund of Kunming University of Science and Technology (nos. 2020T20090030, 2020P20181102007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Wei.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yubo Xing, Deng, Z., Yang, F. et al. Solubility Prediction of FeSO4·7H2O–ZnSO4·xH2O–H2O (x = 6, 7) System Using the Pitzer Ion-Interaction Model. Russ. J. Inorg. Chem. 66, 1549–1553 (2021). https://doi.org/10.1134/S0036023621100211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621100211

Keywords:

Navigation