Skip to main content
Log in

Physicochemical Study of n-Ethylpyridinium bis(trifluoromethylsulfonyl)imide Ionic Liquid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, thermophysical properties of n-ethylpyridinium bis(trifluoromethylsulfonyl)imide have been studied at atmospheric pressure in the temperature range 288.15–338.15 K. Density, speed of sound, refractive index, surface tension, isobaric molar heat capacity, electrical conductivity and kinematic viscosity have been measured; from these data the isobaric expansibility, isentropic compressibility, molar refraction, entropy and enthalpy of surface formation per unit of surface area, and dynamic viscosity have been calculated. Moreover, we have characterized the thermal behavior of the compound. Results have been analyzed paying special attention to the structural and energetic factors. The magnitude and directionality of the cation–anion interactions have been studied using ab initio quantum calculations, which allow a better understanding of the physicochemical behavior of the ionic liquid. Finally, density values and radial distribution functions were also estimated ab initio from classical molecular dynamics simulations, providing acceptable density predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, Weinheim (2003)

    Google Scholar 

  2. Ishikawa, M., Sugimoto, T., Kikuta, M., Ishiko, E., Kono, M.: Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources 162, 658–662 (2006)

    Article  CAS  Google Scholar 

  3. Gan, Q., Rooney, D., Xue, M., Thompson, G., Zou, Y.: An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J. Membr. Sci. 280, 948–956 (2006)

    Article  CAS  Google Scholar 

  4. Torimoto, T., Tsuda, T., Okazaki, K., Kuwabata, S.: New frontiers in materials science opened by ionic liquids. Adv. Mater. 22, 1196–1221 (2010)

    Article  CAS  Google Scholar 

  5. Bermudez, M.-D., Jimenez, A.-E., Sanes, J., Carrion, F.-J.: Ionic liquids as advanced lubricant fluids. Molecules 14, 2888–2908 (2009)

    Article  CAS  Google Scholar 

  6. Pereiro, A.B., Araujo, J.M.M., Esperanca, J.M.S.S., Marrucho, I.M., Rebelo, L.P.N.: Ionic liquids in separations of azeotropic systems—a review. J. Chem. Thermodyn. 46, 2–28 (2012)

    Article  CAS  Google Scholar 

  7. Moniruzzaman, M., Nakashima, K., Kamiya, N., Goto, M.: Recent advances of enzymatic reactions in ionic liquids. Biochem. Eng. J. 48, 295–314 (2010)

    Article  CAS  Google Scholar 

  8. Kato, R., Gmehling, J.: Activity coefficients at infinite dilution of various solutes in the ionic liquids [MMIM]+[CH3SO4], [MMIM]+[CH3OC2H4SO4], [MMIM]+[(CH3)2PO4], [C5H5NC2H5]+[(CF3SO2)(2)N] and [C5H5NH]+[C2H5OC2H4OSO3]. Fluid Phase Equilib. 226, 37–44 (2004)

    Article  CAS  Google Scholar 

  9. Liu, Q.-S., Yang, M., Yan, P.-F., Liu, X.-M., Tan, Z.-C., Welz-Biermann, U.: Density and surface tension of ionic liquids [C(n)py][NTf2] (n = 2, 4, 5). J. Chem. Eng. Data 55, 4928–4930 (2010)

    Article  CAS  Google Scholar 

  10. Zhang, Q.-G., Sun, S–.S., Pitula, S., Liu, Q.-S., Welz-Biermann, U., Zhang, J.-J.: Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate. J. Chem. Eng. Data 56, 4659–4664 (2011)

    Article  CAS  Google Scholar 

  11. Bittner, B., Wrobel, R.J., Milchert, E.: Physical properties of pyridinium ionic liquids. J. Chem. Thermodyn. 55, 159–165 (2012)

    Article  CAS  Google Scholar 

  12. Gutmann, T., Sellin, M., Breitzke, H., Stark, A., Buntkowsky, G.: Para-hydrogen induced polarization in homogeneous phase—an example of how ionic liquids affect homogenization and thus activation of catalysts. Phys. Chem. Chem. Phys. 11, 9170–9175 (2009)

    Article  CAS  Google Scholar 

  13. Garcia-Mardones, M., Bandres, I., Carmen Lopez, M., Gascon, I., Lafuente, C.: Experimental and theoretical study of two pyridinium-based ionic liquids. J. Solut. Chem. 41, 1836–1852 (2012)

    Article  CAS  Google Scholar 

  14. Mokhtarani, B., Sharifi, A., Mortaheb, H.R., Mirzaei, M., Mafi, M., Sadeghian, F.: Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Thermodyn. 41, 323–329 (2009)

    Article  CAS  Google Scholar 

  15. Gu, Z.Y., Brennecke, J.F.: Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 47, 339–345 (2002)

    Article  CAS  Google Scholar 

  16. Matkowska, D., Goldon, A., Hofman, T.: Densities, excess volumes, isobaric expansivities, and isothermal compressibilities of the 1-ethyl-3-methylimidazolium ethylsulfate plus ethanol system at temperatures (283.15 to 343.15 K) and pressures from 0.1 to 35 MPa. J. Chem. Eng. Data 55, 685–693 (2010)

    Article  CAS  Google Scholar 

  17. Carvalho, P.J., Freire, M.G., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Eng. Data 53, 1346–1350 (2008)

    Article  CAS  Google Scholar 

  18. Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F.: Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 37, 559–568 (2005)

    Article  CAS  Google Scholar 

  19. Liu, H., Maginn, E., Visser, A.E., Bridges, N.J., Fox, E.B.: Thermal and transport properties of six ionic liquids: an experimental and molecular dynamics study. Ind. Eng. Chem. Res. 51, 7242–7254 (2012)

    Article  CAS  Google Scholar 

  20. Ngo, H.L., LeCompte, K., Hargens, L., McEwen, A.B.: Thermal properties of imidazolium ionic liquids. Thermochim. Acta 357, 97–102 (2000)

    Article  Google Scholar 

  21. Vogel, H.: Das Temperatur-abhängigkeitsgesetz der viskosität von flüssigkeiten (The temperature-independence law of viscosity of liquids). Phys. Zeit. 22, 645–646 (1921)

    CAS  Google Scholar 

  22. Tammann, G., Hesse, W.: Die Abhängigkeit der viscosität von der temperatur bei unterkühlten flüssigkeiten (The temperature dependence of the viscosity of supercooled fluids). Zeitschrift für anorganische und allgemeine Chemie 156, 245–257 (1926)

    Article  Google Scholar 

  23. Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1923)

    Article  Google Scholar 

  24. Yu, Y.-H., Soriano, A.N., Li, M.-H.: Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids. Thermochim. Acta 482, 42–48 (2009)

    Article  CAS  Google Scholar 

  25. Vila, J., Varela, L.M., Cabeza, O.: Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim. Acta 52, 7413–7417 (2007)

    Article  CAS  Google Scholar 

  26. Gardas, R.L., Coutinho, J.A.P.: A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilib. 266, 195–201 (2008)

    Article  CAS  Google Scholar 

  27. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S., Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)

    Article  CAS  Google Scholar 

  28. Seoane, R.G., Corderi, S., Gomez, E., Calvar, N., Gonzalez, E.J., Macedo, E.A., Dominguez, A.: Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids. Ind. Eng. Chem. Res. 51, 2492–2504 (2012)

    Article  CAS  Google Scholar 

  29. Izgorodina, E.I.: Towards large-scale, fully ab initio calculations of ionic liquids. Phys. Chem. Chem. Phys. 13, 4189–4207 (2011)

    Article  CAS  Google Scholar 

  30. Rees, R.J., Lane, G.H., Hollenkamp, A.F., Best, A.S.: Predicting properties of new ionic liquids: density functional theory and experimental studies of tetra-alkylammonium salts of (thio)carboxylate anions, RCO2 , RCOS and RCS2 . Phys. Chem. Chem. Phys. 13, 10729–10740 (2011)

    Article  CAS  Google Scholar 

  31. Frisch, G.W.T.M.J., Pople, J.A., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C.: Gaussian. Gaussian Inc., Wallingford, CT (2004)

  32. Xuan, X., Guo, M., Pei, Y., Zheng, Y.: Theoretical study on cation–anion interaction and vibrational spectra of 1-allyl-3-methylimidazolium-based ionic liquids. Spectrochim. Acta A 78, 1492–1499 (2011)

    Article  Google Scholar 

  33. Tsuzuki, S., Tokuda, H., Hayamizu, K., Watanabe, M.: Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J. Phys. Chem. B. 109, 16474–16481 (2005)

    Article  CAS  Google Scholar 

  34. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  35. Hockney, R., Goel, S., Eastwood, J.: Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974)

    Article  Google Scholar 

  36. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  37. Berendsen, H., Postma, J., Vangunsteren, W., Dinola, A., Haak, J.: Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  CAS  Google Scholar 

  38. Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  39. Essmann, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., Pedersen, L.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Diputación General de Aragón and Fondo Social Europeo “Construyendo Europa desde Aragón”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lafuente.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benito, J., García-Mardones, M., Pérez-Gregorio, V. et al. Physicochemical Study of n-Ethylpyridinium bis(trifluoromethylsulfonyl)imide Ionic Liquid. J Solution Chem 43, 696–710 (2014). https://doi.org/10.1007/s10953-014-0156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0156-5

Keywords

Navigation